
WiPi: An Extendable Edge Platform for Building Time-critical
Cyber-Physical-Human Systems

MD Asif Hasan
FEECS, Ningbo University
Ningbo, Zhejiang, China

Haiming Chen*

FEECS, Ningbo University
Ningbo, Zhejiang, China
chenhaiming@nbu.edu.cn

Yimo Lin, Xiwen Liu
FEECS, Ningbo University
Ningbo, Zhejiang, China

ABSTRACT

Currently most of cyber-physical-human systems are built
on the cloud centric architecture, which can not support
delay-sensitive applications so well. With the development
of edge computing, it is possible to construct time-critical
cyber-physical-human systems based on edge platforms which
can process users requests locally and provide low-latency
interaction for users effectively. In this paper, we present our
work on designing and implementing an edge platform, named
WiPi. To verify its effectiveness in building time-critical cyber-
physical-human systems, we use WiPi in building a system for
human-in-the-loop control of an Unmanned Surface Vehicle
(USV) for online water quality monitoring. Experimental
results show that the edge-enabled system can reduce the
interaction delay between the device and the user by 54% at
least, as compared with the cloud-centric system.

CCS CONCEPTS

• Computer systems organization → Embedded hard-
ware; Embedded and cyber-physical systems.

KEYWORDS

Cyber-Physical-Human Systems, Cloud Computing, Edge
Computing, Unmanned Surface Vehicle

ACM Reference Format:
MD Asif Hasan, Haiming Chen, and Yimo Lin, Xiwen Liu. 2019.

WiPi: An Extendable Edge Platform for Building Time-critical

Cyber-Physical-Human Systems. In ACM Turing Celebration Con-
ference - China (ACM TURC 2019), May 17–19, 2019, Chengdu,

China. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3321408.3321412

*Corresponding author.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ACM TURC 2019, May 17–19, 2019, Chengdu, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7158-2/19/05. . . $15.00
https://doi.org/10.1145/3321408.3321412

Figure 1: Two architectures of cyber-physical-human
systems: (a) cloud platform centric (b)edge comput-
ing enabled.

1 INTRODUCTION

With rapid development of information technology, more and
more physical objects, like household appliance (e.g. air condi-
tioner), factory equipment (e.g. grinder mixer) and municipal
infrastructure (e.g. gas meters), are digitized as smart devices.
These smart devices interact with networked computers in
the cyber space and involved persons in the social space, to
compose a cyber-physical-human system. Currently most of
cyber-physical-human systems are built with the architecture
shown in Fig. 1(a), which has been widely adopted in building
Internet of Things (IoT) systems, such as the smart manufac-
turing system built on the China-Mobile OneNET platform1

and the smart home system built on the Haier U+ platform2.
The advantage of building cyber-physical-human systems cen-
tered on the Cloud platform (a.k.a. IoT cloud platforms [4])
is making integration of devices in cyber-physical-human
spaces easily, and management of these devices distributed
in the Internet efficiently. So now many IoT cloud platforms
have been provided for open access, such as Apples iCloud,
Google Cloud Platform, Microsoft Azure, Amazon AWS, IBM
Watson, Ali Cloud IoT Hub, and etc.

However, the cyber-physical-human systems built with
the architecture centering on the IoT cloud platforms have
a drawback in providing low-latency interaction between s-
mart devices and users, which is required by time-critical
applications, such as human-in-the-loop control of an Un-
manned Surface Vehicle (USV), because both data flows from
smart devices to users and control flows from users to devices
need going through the Cloud platform in the cyber space.
With the development of edge computing [6], it is possible to
construct time-critical cyber-physical-human systems based
on edge platforms which can process users’ requests locally

1https://open.iot.10086.cn/ocp/welcome/cases
2http://www.haieruplus.com/haierzhihui.htm

https://doi.org/10.1145/3321408.3321412
https://doi.org/10.1145/3321408.3321412
https://doi.org/10.1145/3321408.3321412

ACM TURC 2019, May 17–19, 2019, Chengdu, China MD Asif Hasan, Haiming Chen, and Yimo Lin, Xiwen Liu

and provide users with access to smart devices easily, effec-
tively and immediately, as shown in Fig. 1(b). Now several
edge platforms[1, 2, 9] have been proposed for building such
systems. However, these platforms focus on solving the re-
source sharing problem by loading services into container,
such as Docker, in the edge, which is not so applicable in
some resource limited edge devices.

In this paper, we present our work on designing and im-
plementing an extendable edge platform based on Raspberry
Pi, named WiPi, for low-latency interaction between smart
devices and users. The main challenges and our contributions
of this work are embodied in the following aspects.

(1) How to implement edge services in the WiPi platform?
The edge services can handle requests from users for
reading sensor data and operating associated periph-
erals effectively. In this paper, we proposed a service
architecture based on the raw TCP socket program-
ming framework to implement it.

(2) How to make the WiPi platform easily used in practical
cases? To make the platform easily used, it usually
needs a user-friendly interface. In this paper, we im-
plemented a user interface based on the Android APP,
which is illustrated with a case study of applying the
platform in building a system for human-in-the-loop
control of an Unmanned Surface Vehicle (USV).

The rest of the paper is organized as follows. In section 2,
some related works are briefly described. In section 3, we
introduce the design of WiPi, and then elaborate on the
implementation of WiPi in section 4. In section 5, we give a
case study to test the performance of the platform in terms
of the interaction latency between the device in the physical
space and the user in the human space. At last, we make a
conclusion and discuss our future work in section 6.

2 RELATED WORK

There have been some edge platforms proposed for build-
ing cyber-physical-human systems. Most of these platforms
are designed to support online job dispatching[5, 7] or task
scheduling[3, 10] between the cloud and the edge. Some of
the latest works are briefly introduced below.

In [1], the authors considered the requirements of deploy-
ing pervasive services in open environment and designed a
participatory edge computing platform based on the home
gateway running Docker containers.

In [9], an edge platform using contrainer-based virtual-
ization technology was designed to modularize each data
processing instance and provide various data processing ser-
vices for user requirements.

In [2], the authors considered the requirements of construct-
ing the Web of Things systems with the mashup programming
model, and developed a RESTful runtime container for dy-
namic installation, update, and removal of scripts.

The main concerns addressed by these platforms are how to
provide support for running multiple applications in the edge,
while WiPi mainly aims to provide support for low-latency
interaction between the smart devices and the users.

3 DESIGN OF WIPI

From the system architecture shown in Fig. 1(b), we see that
WiPi is located in the physical space and implemented in a
local computer or an embedded device. This edge platform
can be deployed using wireless communication technology,
such as Bluetooth, ZigBee and WiFi. In this work, we use
WiFi to connect all the smart devices in the cyber space and
the human space to the platform. A WiFi router may be
used as a gateway to establish this connection.

The reasons why we use WiFi as the communication tech-
nology of the edge platform are as follows. (1) An edge service
built on TCP socket will run on it, and more than one in-
teraction requests will be handled by the service. WiFi is
qualified to support multiple connection requests. (2) WiFi
provides sufficient bandwidth for enabling large volume data
transmission between smart devices and users with relatively
low data loss rate. (3) WiFi has relatively wide user accessi-
bility. So connections between smart devices and users can
expand in a larger area, which makes it preferable in outside
environments.

When designing the platform, besides consideration of
choosing a proper wireless communication technology, we
need to find an embedded device which are capable of inte-
grated with any kind of peripherals in the physical space,
such as the manufacturing component or smart home appli-
ance. To make the edge platform easily used, we also take
the choice of user device and development of user interface
into consideration when designing the platform. Below we
will explain the design of these two parts briefly.

3.1 Embedded Device

Developing the edge platform in a tiny embedded device,
firstly it needs to have a network interface to connect to
the WiFi. Secondly, it requires certain hardware equipment,
like some I/O (Input/Output) pins that can read digital
signal and able to produce digital signal, so that it can
control status of the devices and get data from the sensors.
Thirdly, it should have an operating system running inside
the embedded device, so that a service can be deployed inside
it and perform some specific tasks such as controlling other
electronic components and interacting with them.

Raspberry Pi meets all these requirements. So we build
WiPi on it, and deploy a service for interacting with users
directly. Considering the running cost of a service in the
embedded device, we create the edge service using the raw
TCP socket.

3.2 User Device and User Interface

Considering that smart phone is widely used in recent days,
we choose smart phone as the user device and realize a
graphic user interface to interact with the edge platform.
In our work, we take the most popularly installed Android
system as operating system of the user device, and develop
corresponding APP to show the sensed data received from
WiPi, and send control commands to WiPi.

WiPi: An Extendable Edge Platform for Building Time-critical CPHS ACM TURC 2019, May 17–19, 2019, Chengdu, China

Server.java
Make Default Every

Settings

Clear GPIO Pins

Server Started

New
ConnectionNo YES

ClientWorker.java
Communication

With Server
Control GPIO

Save User Command Data

Get User Command Data
Order.java

new ClienWorker(,)

New ClientWorker Object

Order object

User

Figure 2: Software components and their relation-
ship of the edge service running in the WiPi.

4 IMPLEMENTATION OF WIPI

According to the design of the edge platform, we implement
WiPi by developing the edge service running in the Raspberry
Pi and the user interface running in the smart phone.

4.1 Edge Service

We construct the edge service using the raw TCP socket
programming, because of its high efficiency. In Fig. 2, we can
see the way the service works inside the embedded device and
the calling relationship among the classes. The edge service
is implemented in JAVA, and is mainly comprised of the
following three java files.

∙ Server.java: In Fig. 2, we can see how the program
runs inside the platform. In the Server class, it has
two methods, namely makeDefault() and wait(). The
method makeDefault() sets the status of the platform
to the default, by sending signals to the GPIO pins
where sensors or other associated peripherals are con-
nected to the platform. After it finishes setting of GPIO
pins, it will shut down them. Then it will start server
at port number 54321. After opening server port, it
will start an infinite loop to wait for new connections.
Whenever a new connection is established, it will call
a class method defined in Clientworker.java and run it
in a new thread. Besides, the method wait() is defined
to make the platform work in an efficient way by call-
ing the “Thread. Sleep()” method when we want to
post a system delay. This wait () method takes string
parameters for specifying the amount of time we want
to delay in seconds, milliseconds or microseconds.

∙ Clientworker.java: The Clientwork class is an imple-
mentation of the Runnable class. It is called from the
Server class. Its constructer receives two parameters
from the Server class, one is the socket client objec-
t and the other is the object of Order class. Inside
the run method of Clientwork, it has an infinite loop
that continuously communicates with the user client.

If communication between the user clients is somehow
interrupted or disconnected, or if the error of reading
timeout occurs it will break the loop by calling the
endTransmission () method. In the loop, it first waits
for the client to send data. It will process the data and
set the GPIO pins state by making them high or low.
After controlling the GPIO pins according to user data
it will read data from the sensors and send them to
user in the “###” string format.

∙ Order.java: The Order class has some variables to indi-
cate the statuses of the associated peripherals of WiPi,
which is changed by commands sent from users. It
also has some methods to set and get the values of
these variables. For example, if we are controlling the
brightness of a LED connected to WiPi, it will have
a variable to save the brightness level of the LED in
this class. In the Server.java class, we create an object
of the Order class and pass it along with every new
objects of the ClientWorker class. Every time a new
user client connects to the platform, it will create an
object of the ClientWorker class, and then the Server
passes the object of the Order class along with the
object associated with the socket of user client. Every
ClientWorker class has the same object of this class,
letting users to view the changes made by other users
easily.

4.2 User Interface

The user interface of WiPI is implemented by developing an
APP in Android Studio. In current version, we only imple-
ment two activity layouts in the APP.

In the 1st activity, there is one button named connect.
Users click on it to activate the second layout. This layout
class is defined in the file MainActivity.java.

In the 2nd activity, it mainly has two threads. One thread
is used to send commands and check if the end device gets
the command successfully or not. The other thread is to
communicate with IoT device to get sensor data. In the case
study presented below, the commands are defined to change
the rotating speed and direction of the propeller in a USV.

5 PERFORMANCE EVALUATION

To verify of the advantage of the proposed edge platform in
providing low-latency interaction between smart devices and
users for building time-critical cyber-physical-human systems,
we implemented a system for human-in-the-loop control of
an Unmanned Surface Vehicle (USV) for online water quality
monitoring.

The architecture of the whole system is based on the edge
computing enabled one, as shown in Fig. 1 (b). So in the
system there is a device in the physical space, a remote server
running in the cyber space, and a user in the human space.

For the part of the system in the cyber space, we have
developed a tiny cloud server, named Octopus3, running in
the AliYun.

3http://120.27.227.135:8080

ACM TURC 2019, May 17–19, 2019, Chengdu, China MD Asif Hasan, Haiming Chen, and Yimo Lin, Xiwen Liu

Figure 3: An Unmanned Surface Vehicle (USV) with
WiPi inside.

For the part of the system in the physical space, we devel-
oped a USV based on WiPi, as shown in Fig. 3. The USV is
driven by the propeller, of which rotating speed and direction
can be controlled by the steering engine connected with WiPi.
It carries some sensors, namely a pH sensor, a temperature
sensor and a turbidity sensor, to collect some data about the
water quality while it moves. Other components carried by
the device are shown in detail in the right half part of Fig. 3.
We can see that two embedded boards, namely STM32 and
Arduino, and a GPS module are connected with the WiPi
platform as associated peripherals through USB interfaces.
Besides, there is a rechargeable power supplier and a mini
WiFi router, which provide WiFi connection for both the
platform itself and the users in human space.

For the part of the system in the human space, we have
an APP running in Android smart phone, as described in
the previous section.

In Fig. 4, it shows the interacting between WiPi and
APP. In particular, in Fig. 4(b), it shows the user interface
for controlling the moving status of the USV (i.e. the 2nd
activity mentioned in the subsection 4.2), where the “Left”
and “Right” buttons are for direction control, and the “High”
and “Low” buttons are for speed control. In Fig. 4(c), it

Figure 4: Interacting between WiPi and APP. (a)
Moving status of the USV, (b) User interface for
controlling the moving status of the USV, (c) User
interface for showing the collected data.

shows the user interface for showing the collected data, from
which we can see the list of sensing data online.

Because the interaction between the USV and the user
is delay sensitive, to show the effectiveness of the proposed
edge platform in this kind of cyber-physical-human systems,
we also implemented the system based on the cloud-centric
architecture, as shown in Fig. 1(a), as the comparison object.

Fig. 5 shows the comparison results of interaction delay
between devices and users with the number of devices in
the system increasing. The interactive delay is defined as
the time span from the time point when the user sends a

WiPi: An Extendable Edge Platform for Building Time-critical CPHS ACM TURC 2019, May 17–19, 2019, Chengdu, China

Figure 5: Interaction delay between devices and user-
s in the system for human-in-the-loop control of a
USV with the number of devices increasing.

command to the time point when he gets action response
from the device. We can see that the interaction delay can be
reduced by 54% at least as the number of devices increases
from 1 to 10, when it is compared with that in the system
based on the cloud-centric architecture. The increasing trend
of the interaction delay starts from the point when there are
7 devices in the system, mainly due to that all the data flows
and control flows are processed by the central cloud platform,
which has limited resource. However, this limitation does not
exist for the edge computing enabled system, because all the
interactive requests are handled by the corresponding WiPi
platform distributedly.

6 CONCLUSION AND DISCUSSION

In this paper, we present our work on designing and imple-
menting an edge platform, named WiPi, for building time-
critical cyber-physical-human systems. In current stage of
our work, we mainly solve the problem of how to provide
low-latency interaction service between devices in the physi-
cal space and users in the human space. We have verified the
effectiveness of the developed edge platform for building time-
critical cyber-physical-human systems with a case study. In
the case study, we have built a system for human-in-the-loop
control of an Unmanned Surface Vehicle (USV) for online
water quality monitoring. Experimental results show that
the edge-enabled system can reduce the interaction delay be-
tween the device and the user by 54% at least, as compared
with the cloud-centric system.

It is worth noting that in this paper we focus on providing
edge service for low-latency interaction between the device
and the user, which is required to build time-critical cyber-
physical-human systems. This is not the unique purpose
of our developed edge platform. We will extend the edge

service to process the sensed data locally and make on-the-
spot decisions, so as to provide more support for building
time-critical cyber-physical-human systems. Taking the case
studied in the paper, we will make the WiPi platform process
the sensed data to judge the water quality locally. Besides,
because the USV can move on the river under the interactive
control of human, it can collect data continuously. Therefore,
we consider to make the WiPi platform deduce the source of
water pollution, when it detects the water quality lower than
a threshold.

It is also worth noting that WiPi can be easily extended
by associating with other peripherals and sensors to be used
in other applications (i.e. the meaning of “extendable” in the
title of the paper), such as continuous condition monitoring
of vibration for diagnosis of mechanical fault or structural
health, and compare their performance with the systems for
condition monitoring in the cloud[8].

ACKNOWLEDGMENTS

Partial work of this paper is supported by the Zhejiang Provin-
cial Natural Science Foundation of China (LY18F020011),
Ningbo Natural Science Foundation (2018A610154) and the
National Science Foundation of China (NSFC) (61100180).

REFERENCES
[1] A.M. Khan and F. Freitag. 2017. On Participatory Service Provi-

sion at the Network Edge with Community Home Gateways. In
Proceeding of the 8th International Conference on Ambient Sys-
tems, Networks and Technologies (ANT’17). Madeira Portugal,
1–4.

[2] M. Kovatsch, M. Lanter, and S. Duquennoy. 2012. Actinium: A
RESTful Runtime Container for Scriptable Internet of Things
Applications. In Proceeding of the 3rd International Conference
on the Internet of Things (IOT). Wuxi, China, 135–142.

[3] Y. Li, Y. Chen, T. Lan, and G. Venkataramani. 2017. MobiQoR:
Pushing the Envelope of Mobile Edge Computing via Quality-of-
Result Optimization. In Proceeding of the IEEE 37th Internation-
al Conference on Distributed Computing Systems (ICDCS’17).
Atlanta, GA, 1261–1270.

[4] P. P. Ray. 2016. A survey of IoT cloud platforms. Future Com-
puting and Informatics Journal 1, 1-2 (2016), 35–46.

[5] S. Sarkar, S. Chatterjee, and S. Misra. 2018. Assessment of the
Suitability of Fog Computing in the Context of Internet of Things.
IEEE Transactions on Cloud Computing 6, 5 (2018), 46–59.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge computing:
Vision and challenges. IEEE Internet of Things Journal 3, 5
(2016), 637–646.

[7] H. Tan, Z. Han, X. Y. Li, and F. C. M. Lau. 2017. Online Job
Dispatching and Scheduling in Edge-Clouds. In Proceeding of
the IEEE Conference on Computer Communications (INFO-
COM’17). Atlanta, GA, 1–9.

[8] E. Uhlmann, A. Laghmouchi, E. Hohwieler, and C. Geisert. 2015.
Condition Monitoring in the Cloud. Procedia CIRP 38 (2015),
53–57.

[9] H. Watanabe, Tohru Kondo, and Toshihiro Ohigashi. 2019. On
Participatory Service Provision at the Network Edge with Com-
munity Home Gateways. In Proceeding of IEEE International
Conference on Pervasive Computing and Communications Work
In Progress (PerCom’19 WiP). Kyoto, Japan, 1–4.

[10] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu. 2016. Joint Optimiza-
tion of Task Scheduling and Image Placement in Fog Computing
Supported Software Defined Embedded System. IEEE Trans.
Comput. 65, 12 (2016), 3702–3712.

	Abstract
	1 Introduction
	2 Related work
	3 Design of WiPi
	3.1 Embedded Device
	3.2 User Device and User Interface

	4 Implementation of WiPi
	4.1 Edge Service
	4.2 User Interface

	5 Performance Evaluation
	6 Conclusion and Discussion
	Acknowledgments
	References

