
1

Evaluation of SDN-based bandwidth estimation in
Mobile Broad Band networks

Giuseppe Aceto?,†, Fabio Palumbo?, Valerio Persico?,†, Haiming Chen‡, and Antonio Pescapé?,†
?University of Napoli Federico II (Italy) and †NM2 srl (Italy) and ‡Ningbo University (China)
{giuseppe.aceto, fabio.palumbo, valerio.persico, pescape}@unina.it, chenhaiming@nbu.edu.cn

Abstract—Mobile Broad Band (MBB) networks and Software-
Defined Networking (SDN) are expected to strongly characterize
the future evolution of global communications envisioned by the
Fifth Generation mobile networks (5G). Although SDN has seen
adoption and wide experimentation in data-center networks, its
benefits and challenges in MBB has not received comparable
coverage. In this work we experiment with a state-of-art SDN-
based approach for passive monitoring available bandwidth
and throughput with an OpenFlow switch in the mobile node.
We evaluate the approach on a real-world commercial 4G
network (leveraging the MONROE platform), considering two
deployments (with an SDN controller local to the mobile node,
and a remote one, whose control messages traverse the radio
access network) and compare the results of the experiments
against analogous deployments in a fully-wired testbed. For both
the local and remote deployments, different polling periods, in
different traffic conditions, are considered. Results show that,
while further research is needed to investigate the variability of
the relative error (standard deviation ranges between 1.21 and
8.65% in the worst case), its mean is very low, confirming the
feasibility of the proposed estimation approach.

I. INTRODUCTION

In the evolution towards the Fifth Generation of mobile
communications (5G), aimed at enabling a fully mobile and
connected society, several infrastructural innovations have
been considered [1]. Among these, one of the most important
is the deployment of Mobile Broad Band (MBB) networks,
that have an already established coverage in the form of 4G
(with less strict requirements on bandwidth and latency com-
pared to 5G) and are expected to witness public availability
as 5G by 2020. At the same time, in order to manage the
increased complexity of networks and foster their evolvability
towards future applications and scenarios, the novel network
implementation and management paradigm named Software
Defined Networking (SDN) has seen increasing adoption.

The earlier real-world SDN implementations have been
motivated by data-center network fast-paced evolution [2],
but mobile terminals arguably will soon become another
application scenario benefiting from SDN in the evolution
towards 5G. MBB access networks already show abundant
cases of access sharing among multiple devices, e.g. by means
of mobile hotspots or mobile wireless router (so-called Mi-
Fi); similarly, wireless networks are used as a backhaul for
smart cities [3, 4], and modern vehicles are often equipped
with network applications for different goals, such as enter-
tainment, traveling assistance, comfort, or maintenance. All
these examples can be modeled as mobile nodes acting as a

gateway for a number of network applications and network
devices, sharing one or more Radio Access Networks (RANs)
towards the Internet.

In this scenario SDN offers several advantages related to its
promise of flexibility and standardization (and thus, “future-
readiness”), including new monitoring possibilities. On the
other hand, due to the novelty of both the technologies and the
application scenarios (also characterized by resource-limited
devices), SDN in MBB is subject to new challenges and
issues, demanding for experimental evaluation and analysis
in realistic testbeds or in-the-wild deployments. This need can
be answered by experimental testbeds such as that delivered
by the MONROE project1 in which we have operated the
SOMETIME experiment2. The MONROE testbed [5] has
been designed purposely to provide an experimental platform
on real MBB access networks, offering the suitable infras-
tructure to implement and evaluate our measurement efforts.
More specifically, the SOMETIME experiment has focused on
Available Bandwidth estimation in an SDN environment, over
commercial 4G connections.

In this paper, we experimentally evaluate a state-of-art
SDN-based approach recently proposed in [6] for monitoring
bandwidth (in terms of both available bandwidth and through-
put) in a real-world MBB scenario (leveraging the MONROE
platform). In a nutshell, the approach under investigation—
running onto an SDN controller—takes advantage of the
network abstractions provided by the SDN southbound API
to query the switches in the mobile network and gather the
available counters in order to perform passive measurements.

The contribution of this work consists in the first—to the
best of our knowledge—experimental evaluation of an SDN-
based bandwidth estimation method in a commercial MBB
scenario, with setups comprising both a local and a remote
SDN controller, compared with an analogous fully wired setup
(Figure 1). Hence, we provide an accuracy assessment of the
considered monitoring approach when varying measurement
parameters (polling period), deployment aspects (position of
the SDN controller), as well as the characteristics of the
monitored traffic (its average throughput). Results show that
accuracy is very high on average, with mean error close to
zero in all the investigated scenarios. However, experimental

1The MONROE project (https://www.monroe-project.eu) is an European
Union’s Horizon 2020 funded research project.

2The SOMETIME project (SOftware defined network-based available
Bandwidth MEasuremenT In MONROE) is part of the 1st MONROE Open
Call for Experiments.



2

(a) Wired LAN deployment.

(b) RAN/Internet-crossing deployment.

Fig. 1. Measurement setups. Dashed blue lines show the application traf-
fic, while dotted-dashed green lines report OpenFlow messages exchanged
between the controller and the switch, for both deployments the local and
remote controller setups are shown.

campaigns show that some of the investigated factors (e.g.,
polling period) impact the accuracy of the method.

The paper is organized as follows. In Section II we provide
background for SDN, the MONROE platform used for the
experiments, and available bandwidth and throughput defini-
tions and measurement approaches. In Section III we briefly
summarize the working principle of the investigated method.
We then show the experimental analysis in Section IV and
discuss the main outcomes in Section V. Finally, we draw the
main conclusions and discuss future work in Section VI.

II. BACKGROUND

In this section we provide the background to understand the
basic working principle of the investigated approach as well as
the context and experimental environments the measurements
have been conducted into, while citing alternative approaches
to position our contribution against the existing literature.

Software-Defined Networking: Software-Defined Net-
working (SDN) is a recent common name for earlier ap-
proaches in network devices management, rooted in works in
the fields of active networks and network virtualization. SDN
is based on the whole separation of control and data planes.
Indeed, network devices are simple forwarding elements—
SDN switches or simply switches—whose forwarding rules
are based on a set of fields in the packet headers, while
the control plane is relocated onto an external (logically
centralized) entity—SDN controller. In the current form, SDN
attracted significant research and deployment after the intro-
duction of OpenFlow [7] standard protocol for controller-
switch communication—southbound interface in OpenFlow
terms. For more details and a broad discussion on SDN
we refer to [8]. Network monitoring with SDN has been
considered in several works, the most similar to ours is

considering OpenFlow monitoring messages to calculate the
flow throughput averaged on the whole flow duration [9],
while others indirectly exploit control communications to infer
network metrics [10]. Besides being focused on different
metrics and adopting different approaches, to the best of
our knowledge no previous work has investigated bandwidth
measurement with OpenFlow on MBB networks (we refer
to [6] for further details on the related works).

MONROE testbed: MONROE is an EU project whose
objective is to design and operate an European transnational
open platform for independent, large-scale monitoring and as-
sessment of performance of MBB networks in heterogeneous
environments. The platform is composed of the following main
components: (i) distributed standardized hardware appliances
(MONROE nodes, also referred to as mobile nodes in the fol-
lowing) running the experiment software; (ii) the software—-
core components and user-defined experiments—running on
MONROE nodes in virtualized environments; (iii) the manage-
ment system, allowing users to access, schedule experiments,
and import data; (iv) a database holding experimental results.
For further details on MONROE we refer to [5] and project
deliverables.

Throughput and Available Bandwidth: Network through-
put refers to the amount of information transferred from a
source to a destination over a time interval. If maximum
application-layer throughput is considered, it is upper-bounded
by the network-layer throughput, and also depends on the
transport protocol (e.g., TCP or UDP) adopted. A related
network metric, Available Bandwidth (ABw) of a hop is the
average of unused capacity during a considered time interval
(equal to hop capacity subtracting throughput). The ABw of
a path is defined as the minimum value of ABw of the links
composing the path, and can be considered as the maximum
network-layer throughput that can be imposed on that path
without affecting the other flows sharing part of it.

Throughput and ABw can be estimated both through active
and passive measurement approaches. While we have analyzed
ABw estimation with active measurement methods in MBB
scenario in recent works [11], in this work we focus on passive
approaches, along the lines described in [6], but applying it to
real MBB scenario, using only standard OpenFlow messages.

III. MEASURING THROUGHPUT AND AVAILABLE
BANDWIDTH WITH SDN

The measurement method under investigation leverages the
API exposed by SDN switches to gather information about
traffic flows of interest. In more details, the measurement
application running on the SDN controller queries at different
points in time the volume counters—that an SDN switch stores
for each flow in its flow table—for a flow of interest. Querying
the information related to traffic flows crossing specific inter-
faces, the controller can obtain a view related to the overall
traffic crossing a link. Evaluating the value of volume counters
at two different points in time, the measurement application
is able to estimate the network throughput Bi on the link as

Bi =
Vi − Vi−1

Ti − Ti−1
=

∆Vi

∆Ti
(1)



3

where Vi and Ti are the data volume counter and the timestamp
of the i-th query, respectively. When the capacity of the link
is known for the whole path, by measuring the throughput
for each link the measurement application can evaluate the
ABw on the link as its spare capacity, and on the path as the
minimum among such values.

Considering the OpenFlow implementation of this method,
queries consist of FlowStats Request messages, while
volume counters are carried back to the controller within
FlowStats Reply messages. For the detailed message
exchange during the measurement process we point to [6].
Notably as OpenFlow does not store in the message the actual
timestamp associated to volume counters (according to the
most recent standard version, 1.5), the ability of the controller
of associating reliable timestamps to these counters is crucial:
in fact, errors in evaluating ∆Ti may significantly impact the
accuracy of the throughput estimate (see [6] for a detailed
analysis and possible solutions extending the OpenFlow proto-
col). In this work, among the aspects we take in consideration,
we investigate the impact of two crucial parameters: (i) the
polling period and (ii) the position of the controller with
respect to the switch. According to the considerations above,
polling period (i.e. the time distance between two consecutive
FlowStats Request messages) is an important parameter
of the measurement process: lower polling periods allow to
obtain finer measurement granularity, but on the other hand,
smaller values for ∆Ti would amplify the impact on measure-
ment accuracy of errors and uncertainties of the timestamping
process. The need for placing the controller at different points
in the network may be dictated by different architectural and
deployment constraints and therefore we believe the impact of
this deployment choice is worth to be investigated.

IV. EXPERIMENTAL ANALYSIS

Measurement scenario: For the experimental analysis
we considered two different scenarios, namely a wired-LAN
deployment and an RAN/Internet-crossing deployment (see
Figure 1). Both scenarios share the configuration of the end
hosts (i.e. of the mobile node and of the measurement server)
but differ by the way they are connected. In the former
case (see Figure 1a), the mobile node is deployed in our
laboratory at the University of Napoli, directly connected to
the measurement server through a 100 Mbps Ethernet LAN. In
the latter case (see Figure 1b), while the measurement server
is still in Napoli, the mobile node is deployed in Karlstad
(Sweden) and connected to the public Internet through a
4G access network (operated by Telia). For both scenarios:
(i) a software OpenFlow switch (Open vSwitch, OVS) was
deployed onto the mobile node, configuring it as a gateway
for all the traffic exiting from and entering the node; (ii) a
synthetic traffic generator (DITG [12]) was deployed onto the
mobile node, in charge of generating constant-bitrate traffic at
different rates towards the measurement server; (iii) we have
alternatively considered experiments with the SDN controller
(Ryu) placed either on the mobile node (local controller)
or on the measurement server (remote controller). According
to the MONROE project design, all the software modules

running on the mobile node were run inside a lightweight
virtualization environment (containerization using Docker3).
Hardware and software characteristics of the mobile node and
the measurement server are reported in Table III.

Experiment Design: In our experimental campaigns, we
have considered as experimental variables (i) the placement of
the controller (local or remote); (ii) the rate of the traffic flows
generated by D-ITG (0.1 Mbit/s, 0.5 Mbit/s, 1 Mbit/s, 5 Mbit/s,
10 Mbit/s and 50 Mbit/s); (iii) and the polling period at which
the controller queries the information from the switch (0.5 s,
1 s, 2 s, 5 s, 10 s). It is worth noting that results shown in
Section IV are all related to experiments where actual requests
are made by controllers every 0.5 s. Indeed, after a two-hour
preliminary campaign where we set the controllers to query
the switch at different periodicities, we chose to reconstruct
results related to larger polling periods sampling the sequences
obtained with the 0.5 s polling period with different pace (i.e.
1/2, 1/4, 1/10, 1/20). This design choice allows us to fairly
compare results obtained leveraging different polling periods
with no bias generated e.g., by possibly encountered network
transient variability. For each of the experimental scenarios
taken into account, the obtained statistics refer to 100 samples.

In our experiments, while D-ITG was generating traffic
the throughput was monitored by the controller (OpenFlow
FlowStats Request/FlowStats Reply message ex-
change). The traffic exchanged between the switch and the
controller is captured on the switch, thus allowing to compare
the inter-departure times of the replies sent by the switch
(which constitute our ground truth), to the ∆T seen by the
controller, where the timestamps associated to the replies
(FlowStats Reply messages) are considered. Therefore,
for accuracy evaluation purposes, we define the ∆T relative
error as the difference between the interval estimated by the
controller minus the interval seen on the switch, normalized to
the ground truth. In this work, we always report this value in
percentage. The error we report has a direct relationship with
the error in estimating network throughput, since this is cal-
culated as the difference in the counter values returned by the
switch divided by the time interval separating the two replies.
As the traffic counters on the switch are collected with no
sampling nor precision degradation, there is no measurement
error on the volumes, therefore the error on throughput and
ABw is linearly (inversely) dependent on ∆T estimation error
only (see equation 1).

Experimental results: A common result for all considered
scenarios is that the relative error on ∆T is concentrated
around zero, and for the vast majority of cases, its standard
deviation is smaller than 1%. In the following we detail the
results of the experimental campaigns, first for the wired-
LAN deployment and then for the RAN/Internet-crossing one,
discussing edge cases.

1) Wired LAN deployment: Details of results for this sce-
nario are summarized in Tables I and II, where mean and
standard deviation of the relative error are shown for local and
remote controller, respectively, varying the values for polling
period and generated bitrate. Indeed, in both local and remote

3http://www.docker.com.



4

TABLE I
MEAN AND STANDARD DEVIATION (%) FOR ∆T relative error IN WIRED-LAN DEPLOYMENT USING LOCAL CONTROLLER.

Requested bitrate (Mbps)
0.1 0.5 1 5 10 50

Period (s)

0.5 0.0078 ± 0.4590 0.0076 ± 0.3586 0.0064 ± 0.5999 0.0035 ± 0.6755 0.0056 ± 1.6695 0.0039 ± 1.9629
1 0.0079 ± 0.2505 0.0070 ± 0.2055 0.0067 ± 0.3315 0.0050 ± 0.4108 0.0070 ± 1.2465 0.0045 ± 1.3440
2 0.0072 ± 0.1156 0.0067 ± 0.1121 0.0068 ± 0.1814 0.0054 ± 0.2313 0.0078 ± 0.7372 0.0070 ± 0.5825
5 0.0060 ± 0.0500 0.0065 ± 0.0535 0.0064 ± 0.0755 0.0064 ± 0.1021 0.0076 ± 0.3062 0.0111 ± 0.3243
10 0.0062 ± 0.0272 0.0062 ± 0.0303 0.0062 ± 0.0386 0.0066 ± 0.0522 0.0068 ± 0.1557 0.0116 ± 0.1712

TABLE II
MEAN AND STANDARD DEVIATION (%) FOR ∆T relative error IN WIRED-LAN DEPLOYMENT USING REMOTE CONTROLLER.

Requested bitrate (Mbps)
0.1 0.5 1 5 10 50

Period (s)

0.5 0.0059 ± 0.1462 0.0106 ± 0.0992 0.0100 ± 0.1279 0.0066 ± 0.1749 0.0110 ± 0.2206 0.0071 ± 0.2157
1 0.0069 ± 0.0841 0.0086 ± 0.0676 0.0091 ± 0.0824 0.0080 ± 0.0995 0.0104 ± 0.1196 0.0073 ± 0.1187
2 0.0080 ± 0.0530 0.0077 ± 0.0379 0.0081 ± 0.0567 0.0081 ± 0.0540 0.0101 ± 0.0678 0.0093 ± 0.0669
5 0.0066 ± 0.0251 0.0071 ± 0.0184 0.0073 ± 0.0248 0.0066 ± 0.0267 0.0086 ± 0.0281 0.0061 ± 0.0361
10 0.0052 ± 0.0114 0.0049 ± 0.0106 0.0053 ± 0.0123 0.0043 ± 0.0110 0.0067 ± 0.0158 0.0035 ± 0.0170

−1 0 1
∆T relative error [%]

0

10

20

D
en

si
ty

[%
]

Local

Remote

(a) Polling period: 10 s.

−1 0 1
∆T relative error [%]

0

10

20

D
en

si
ty

[%
]

Local

Remote

(b) Polling period: 5 s.

−1 0 1
∆T relative error [%]

0

10

20

D
en

si
ty

[%
]

Local

Remote

(c) Polling period: 0.5 s.

Fig. 2. Distribution for the relative error in the wired-LAN deployment for different polling periods when D-ITG traffic is generated at 50 Mbit/s. Probability
density function (PDF) is compared for local and remote controllers. With higher polling periods the error distributions are more concentrated around the
mean.

controller cases the average relative error is always lower than
0.015%. However, considering the distribution of the error,
by looking at Figure 2 it can be noted that it is symmetrical
around the mean, and decreasing the polling period causes
standard deviation to significantly raise. Similar behavior is
observed for increasing generated bitrate, especially in the
case of local controller. A potential explanation for this
phenomenon is the sharing of computing resource among the
controller, the switch, and the application generating traffic,
all deployed in the same Docker container. We plan to further
investigate this phenomenon in our ongoing work.

2) RAN/Internet-crossing deployment: In Figure 3, the rel-
ative error of ∆T is shown for different polling periods
(different rows) both when considering local and remote
controller (left and right column, respectively). In more details,
the figure reports as boxplots the distribution for different
experiments, showing 5th percentile, 25th percentile, median,
75th percentile, and 95th percentile. Values below the 5th

percentile and above the 95th percentile are plotted as outliers

TABLE III
HARDWARE AND SOFTWARE CHARACTERISTICS OF THE MOBILE NODE

AND THE MEASUREMENT SERVER.

HW/SW Measurement Mobile
spec. server node
CPU i7-4710MQ @ 2.50GHz x8 AMD G-T40E @ 1 GHz x2
RAM 12 GB DDR3 @ 1600 MHz 4 GB DDR3 @ 1066 MHz
NIC Gigabit Ethernet 3xGigabit Ethernet ports
4G — 3xZTE MF910 MiFi
OS Ubuntu 16.04 64 bit Debian-Jessie

Kernel 4.4.0-119-generic 4.9.0-6-amd64

(black circles).
Considering the local controller, Figures 3a, 3c, 3e, 3g, 3i

show that the variability (see outliers and whiskers length)
is higher when generated traffic has higher throughput. An
exception to this behavior, the lowest considered bitrate
(0.1Mbps) shows higher variability. Our hypothesis for this
unexpected result is that the virtualization environment hosting
at the same time the SDN controller, the SDN switch, and
the application generating the traffic affects the measurements
(e.g. due to scheduling policy and queueing of node-local
communications). Further investigation is planned to verify
such hypothesis.

Instead, when the controller is deployed on the remote
server (Figures 3b, 3d, 3f, 3h, 3j) the variability of the relative
error does not significantly change when increasing requested
bitrate, and also outliers are more limited. The exceptional
cases are related to 50Mbps requested traffic: inter-quartile
ranges increases more than linearly with respect to the case
of 10Mbps, and both 5th and 95th percentiles are more
distant (crossing +5% and −10% relative error levels when
considering a 0.5 s polling period). We have found the reason
for this behavior, which is shown for all the different polling
periods, considering that monitoring replies from switch to
controller share the same link used by background traffic: at
the highest rate the latter saturates the bandwidth (as confirmed
by logs from D-ITG, which show an achieved throughput
less than half the requested rate), making the effect on the
measured delays clearly visible. Therefore, the position of the



5

0.1 0.5 1 5 10 50
Requested bitrate [Mbit/s]

−15

−10

−5

0

5

∆
T

re
la

ti
ve

er
ro

r
[%

]

(a) Polling period: 0.5 s.

0.1 0.5 1 5 10 50
Requested bitrate [Mbit/s]

−15

−10

−5

0

5

∆
T

re
la

ti
ve

er
ro

r
[%

]

(b) Polling period: 0.5 s.

0.1 0.5 1 5 10 50
Requested bitrate [Mbit/s]

−15

−10

−5

0

5

∆
T

re
la

ti
ve

er
ro

r
[%

]

(c) Polling period: 1 s.

0.1 0.5 1 5 10 50
Requested bitrate [Mbit/s]

−15

−10

−5

0

5
∆

T
re

la
ti

ve
er

ro
r

[%
]

(d) Polling period: 1 s.

0.1 0.5 1 5 10 50
Requested bitrate [Mbit/s]

−15

−10

−5

0

5

∆
T

re
la

ti
ve

er
ro

r
[%

]

(e) Polling period: 2 s.

0.1 0.5 1 5 10 50
Requested bitrate [Mbit/s]

−15

−10

−5

0

5

∆
T

re
la

ti
ve

er
ro

r
[%

]

(f) Polling period: 2 s.

0.1 0.5 1 5 10 50
Requested bitrate [Mbit/s]

−15

−10

−5

0

5

∆
T

re
la

ti
ve

er
ro

r
[%

]

(g) Polling period: 5 s.

0.1 0.5 1 5 10 50
Requested bitrate [Mbit/s]

−15

−10

−5

0

5

∆
T

re
la

ti
ve

er
ro

r
[%

]

(h) Polling period: 5 s.

0.1 0.5 1 5 10 50
Requested bitrate [Mbit/s]

−15

−10

−5

0

5

∆
T

re
la

ti
ve

er
ro

r
[%

]

(i) Polling period: 10 s.

0.1 0.5 1 5 10 50
Requested bitrate [Mbit/s]

−15

−10

−5

0

5

∆
T

re
la

ti
ve

er
ro

r
[%

]

(j) Polling period: 10 s.

Fig. 3. Relative error when varying requested bitrate using a local (left) and
remote (right) controller in the RAN/Internet-crossing deployment.

controller may have a significant impact on the error when the
network used for the in-band communication between switch
and controller is loaded. To highlight the effect of polling
period given a requested background traffic rate, we refer to
Figures 4a–4d. Both with a local (left) and a remote (right)
controller, the variability of the relative error—expressed as
standard deviation or inter-quartile range—decreases when
the polling period increases, as expected. This behavior is

0.5 1 2 5 10
Polling period [s]

−5.0

−2.5

0.0

2.5

5.0

∆
T

re
la

ti
ve

er
ro

r
[%

]

(a) Requested rate: 0.1 Mbps.

0.5 1 2 5 10
Polling period [s]

−5.0

−2.5

0.0

2.5

5.0

∆
T

re
la

ti
ve

er
ro

r
[%

]

(b) Requested rate: 0.1 Mbps.

0.5 1 2 5 10
Polling period [s]

−5.0

−2.5

0.0

2.5

5.0

∆
T

re
la

ti
ve

er
ro

r
[%

]

(c) Requested rate: 50 Mbps.

0.5 1 2 5 10
Polling period [s]

−5.0

−2.5

0.0

2.5

5.0

∆
T

re
la

ti
ve

er
ro

r
[%

]

(d) Requested rate: 50 Mbps.

Fig. 4. Relative error when varying polling period using a local (left) and
remote (right) controller in the RAN/Internet-crossing deployment. Y-axes
range is restricted to emphasize the differences between the different periods.

consistent on all considered scenarios, therefore we reported
only a representative subset. Using a higher polling period,
indeed, the uncertainty about the delays is averaged over a
wider interval and therefore becomes negligible. This comes
to the cost of monitoring the network less frequently, being less
reactive to sudden changes in network traffic. It should be also
noted that when the polling period is lower, less computational
resources are needed, and this aspect should be taken into
account, particularly when the controller is deployed on the
same node as the switch.

V. DISCUSSION

The results of our investigation have shown that passive
measurements using an SDN switch co-located with the
mobile terminal (run in the same container of applications
generating traffic towards the RAN) are both feasible and
show a mean relative error close to zero, with a limited
standard deviation. In our experimental evaluation we have
verified that even if the average of the relative error tends to
zero, each measurement carries estimation errors that can be
non-negligible, specially for high traffic rates and low polling
periods. In order to average the measurement errors, several
subsequent measurements can be used, at the expense of the
time granularity of the estimation.

To infer the ABw of the radio access link from the measure-
ment of the throughput, the knowledge of capacity of the link
is needed. Such information can be derived either from passive
measurements and device-provided link status data [13], or by
active measurements along the lines of [11]. Both kinds of
measurements arguably introduce further and different forms
of error, to be compared with the one we estimated in the
current paper. We leave these further experimental evaluations
to future works. From a more practical standpoint, a sensible
upper bound on ABw can be derived from throughput mea-
surements by considering the nominal capacity for a given
transmission technology, as obtained by the mobile device



6

monitoring metadata [13]. Such upper bound would be useful
to enforce an optimistic admission control, with the advantage
of no excess rejection.

The measurement setup considered in this work and imple-
mented on the MONROE testbed is modeling a more complex
application scenario. First of all, as the OVS that is located
on the mobile node acts as a gateway for the radio access
link, it constitutes a monitoring and management point for the
local network. The traffic to and from the local network that
traverses the shared radio access link is in our experiments
emulated using a network traffic generator, but this does not
imply lack of generality for the SDN-based measurement we
explored in this work. In fact, the aggregate volume of such
diverse traffic would be accounted for at the same way, and
without any measurement error, by the SDN switch.

On the other hand, the possibility to configure the local
SDN network in response to the estimated bandwidth on the
RAN link opens new possibilities, such as network admission
control for applications requiring a given bandwidth, or traffic
engineering based on different priority associated with the
application generating the traffic.

VI. CONCLUSION

We have presented and discussed the experimenting with
a passive SDN-based approach for estimating available band-
width and throughput, applied to the case of MBB networks
(4G). More specifically, we analyzed the inaccuracy on time
interval estimation, that is the source of error in the pro-
posed bandwidth estimation approach, as the traffic volumes
are collected with no approximation nor sampling. In the
experimental design we focused on the effect of controller
deployment (local to the mobile node, or instantiated on the
other end of a path comprising a RAN link), while varying the
periodicity at which the monitoring information is collected, in
different traffic conditions (emulated with a traffic generator
in the mobile node). We have compared the results with a
fully controlled testbed in which the network path between
the node and the controller is substituted with a wired LAN
to highlight the effect of network conditions variability on
the estimation procedure. Results confirm that the proposed
solution is viable in mobile nodes, showing signs of computing
resources exhaustion only in the most demanding case (the
SDN controller instantiated on the mobile node in the same
container with the SDN switch and the application generating
high-throughput traffic). In all the cases, the relative error on
the time interval estimation is very low, averaging at zero
with standard deviation ranging between 1.31 and 8.65% when
the requested bitrate is highest and the controller is remote.
Such encouraging results inspire further research goals. For
what concerns the effect of the position of the controller,
the characteristics of the network path interconnecting the
controller to switch is worth being investigated (in terms of
e.g., delay, jitter, and packet loss) as each of these QoS indexes
can have a different impact on the measurement process. A
model summarizing such characterization could be used to
predict or improve the estimation accuracy. Moreover, the
feasibility of both passive measurement methods and active

ones for bandwidth estimation paves the way for a hybrid
method, using both kinds of measurements to improve either
the accuracy or the efficiency of the estimation procedure.

REFERENCES
[1] A. Annunziato. 5g vision: Ngmn - 5g initiative. In 2015 IEEE 81st

Vehicular Technology Conference (VTC Spring), May 2015.
[2] B. Dai, G. Xu, B. Huang, P. Qin, and Y. Xu. Enabling network

innovation in data center networks with software defined networking:
A survey. Journal of Network and Computer Applications, 94, 2017.

[3] R. P. Karrer, I. Matyasovszki, A. Botta, and A. Pescapè. Magnets-
experiences from deploying a joint research-operational next-generation
wireless access network testbed. In Testbeds and Research Infrastructure
for the Development of Networks and Communities, 2007. TridentCom.
IEEE, 2007.

[4] R. P. Karrer, I. Matyasovszki, A. Botta, and A. Pescapè. Experimental
evaluation and characterization of the magnets wireless backbone. In
Proceedings of the 1st international workshop on Wireless network
testbeds, experimental evaluation & characterization. ACM, 2006.

[5] Ö. Alay, A. Lutu, R. Garcı́a, M. Peón-Quirós, V. Mancuso, and et al.
Measuring and assessing mobile broadband networks with MONROE.
In IEEE WoWMoM, 2016.

[6] P. Megyesi, A. Botta, G. Aceto, A. Pescapè, and S. Molnár. Challenges
and solution for measuring available bandwidth in software defined
networks. Computer Communications, 2016.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation in
campus networks. SIGCOMM Computer Communnication Review, 38
(2), March 2008.

[8] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig. Software-defined networking: A com-
prehensive survey. Proceedings of the IEEE, 103(1), Jan 2015.

[9] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers. Opennetmon:
Network monitoring in openflow software-defined networks. In Network
Operations and Management Symposium (NOMS), 2014 IEEE. IEEE,
2014.

[10] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha. Flowsense: Monitoring network utilization with zero
measurement cost. In International Conference on Passive and Active
Network Measurement. Springer, 2013.

[11] G. Aceto, V. Persico, A. Pescapè, and G. Ventre. Sometime: Software
defined network-based available bandwidth measurement in monroe. In
Network Traffic Measurement and Analysis Conference (TMA), 2017.
IEEE, 2017.

[12] A. Botta, A. Dainotti, and A. Pescapè. A tool for the generation of re-
alistic network workload for emerging networking scenarios. Computer
Networks, 56(15), 2012.

[13] X. Xie, X. Zhang, and S. Zhu. Accelerating mobile web loading
using cellular link information. In Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’17, New York, NY, USA, 2017. ACM.


