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Abstract—Recently, the emerging high-speed and low-latency
communication techniques (e.g., 5G and WiFi6) reactivate the
popularity of some Internet applications. Most of them simulta-
neously need the support of high-throughput and low-latency
transmission provided by underlying networks. As the core
component to ensure reliable data delivery, TCP congestion
control algorithms have attracted the attention of Linux kernel
developers over the past two decades. BBR is a representative
congestion control algorithm developed by Google in 2016.
Compared with traditional algorithms, BBR probes the max-
imum available bottleneck bandwidth and minimum Round-
Trip Time. This mechanism makes BBR perform better than
previous schemes over high bandwidth-delay and lossy networks.
However, according to the extensive measurement of BBR over
China Mobile 5G networks, we found that the performance of
BBR is not good when the network state changes frequently.
It is mainly caused by the fixed gain parameter. To solve this
issue, we adopt the wisdom of reinforcement learning techniques
to fine-tune the gain parameter and provide an intelligent BBR
(named BBR-FIT). Extensive experiments with the mahimahi
tool and real testbed indicate that, compared with BBR, BBR-
FIT can promote the link utilization (2×) without inducing an
increase in packet delay.

Index Terms—BBR, reinforcement learning techniques, fine-
tune the gain parameter, dynamic networks

I. INTRODUCTION

Real-time and interactive multimedia such as live-streaming
and virtual/augmented reality have been gaining popularity all
over the world. With enhanced mobile broadband (eMBB) as
the predominant scenario for 5G networks, the demand for
real-time streaming applications is expected to be met [1].
On the one hand, the new wave of video quality technology
innovations causes real-time streaming applications, such as
4K video streaming, to consume more network bandwidth [2].
On the other hand, some interactive applications, like video
conferencing, require transmission latency close to real-time.
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Fig. 1. The essential working model of BBR.

As the fundamental component for ensuring reliable data
delivery, TCP congestion control algorithms (CCAs) have
attracted the interest of Linux kernel developers over the past
two decades. The primary objective of traditional CCAs is to
enhance the performance in specific networks [3] [4] [5]. For
instance, CUBIC [6] was designed for wired networks and is
typically inapplicable in cellular networks. Each year, a new
wave of technological innovations would inspire a new wave
of CCA design. At least 15 CCAs have been implemented
in the Linux kernel thus far. Therein, BBR [7] is an exam-
ple of a CCA developed by Google in 2016. BBR probes
the maximum available bottleneck bandwidth and minimum
Round-Trip Time (RTT). Fig. 1 depicts the essential working
model of BBR. Compared with loss-based or delay-based
CCAs, BBR claims to be a rate-based CCA. Specifically, BBR
initiates the CCA mechanism at the optimal operating point
by periodically measuring the minimum RTT and maximum
bandwidth. The product of these two parameters is known as
the bandwidth product (BDP).

5G networks introduce the small-cell concept, making it
impossible for 5G base stations to cover vast regions. There-
fore, the 5G capacity may be highly jittered during the fast
movement [8]. The increment in traffic further exacerbates the
capacity jitter in 5G networks. As the default CCA for Google
services, BBR commands 11% of US Internet traffic [9].
However, simulations in Section II demonstrate that BBR has
a severe performance degradation in time-varying networks.
We explore the reasons behind this problem in the next
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Fig. 2. Throughput of BBR over time in 5G networks.

section. Briefly, BBR does not detect the change in network
capacity in time. Our objective is to enhance the efficiency of
BBR in time-varying networks, such as China Mobile’s 5G
networks. To solve these issues, we present BBR-FIT in this
paper. Unlike the original BBR, BBR-FIT is an intelligent
BBR based on reinforcement learning (RL) to boost network
efficiency over time-varying networks. After training, BBR-
FIT can automatically adjust the pacing rate. The summary
of our contributions is as follows:

• We discover the performance degradation of BBR in
time-varying networks.

• We propose a novel CCA, BBR-FIT, that adjusts the
pacing gain in the steady phase by employing RL tech-
niques.

• We implement BBR-FIT based on the Mahimahi simula-
tor, deploy it with the Linux Kernel 4.13.10, and compare
it to other CCAs. The results demonstrate that BBR-FIT
outperforms other CCAs regarding throughput-latency
tradeoff in various network scenarios.

II. MOTIVATION

By introducing millimeter-wave (mmWave) communica-
tions, 5G networks offer the potential multi-gigabit-per-
second rate for real-time applications. However, mmWave ca-
pacity can be highly dynamic (Fig. 2). [11] demonstrates that
manually tuned TCP flow performs poorly predicting band-
width. Today’s networks are in a highly dynamic and complex
environment. The decision-making process of manually tuned
TCP CCAs is based on the pre-defined rules designed by
human understanding of the network. Since human knowledge
does not always accurately characterize the network features,
manual pre-defined rules can only help manually tuned CCAs
achieve sub-optimal performance. Moreover, manually tuned
CCAs assume no prior information about networks and fail
to learn from historical knowledge. Despite many years of
improvements, manually tuned CCAs still suffers from an
unsatisfactory performance [12], [13]. With the emergence
of several dedicated libraries, such as TensorFlow, Caffe,
and PyTorch, building an accurate model for RL has been
dramatically simplified. RL techniques would help manually
tuned CCAs learn network information from experience.
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Fig. 3. Throughput and delay for different pacing gain in steady phase.

To evaluate the performance of BBR in time-varying net-
works, We employ the topology and 5G trace in Section IV.
As shown in Fig. 2, the purple background part shows the link
capacity over time, while the red line is the BBR throughput
over time. BBR underutilizes the bottleneck bandwidth in 5G
networks. BRB probes the bandwidth in the first two RTTs
of the ProbeBW phase and keeps the pacing gain constant in
the last six RTTs (so-called steady phase). [14] points out that
this model is the main reason for the throughput degradation
of BBR in time-varying networks.

We consider the worst scenario for this model, where the
bandwidth rises at the start of the steady phase. To simulate
such a scenario, We employ Mahimahi to simulate a network
with a bandwidth of 100M, a latency of 40ms and a buffer
size of 1BDP. A server and a client are connected through
a switch. Meanwhile, once we monitor the BBR to enter
the steady phase, we use the TC command in a switch to
increase the bandwidth and recover it after the steady phase
end. Finally, we investigate the impact of pacing gain on BBR
performance. Fig. 3 shows the link utilization and delay for
different pacing gain. A larger pacing gain is beneficial for
sensing bandwidth changes in time while obtaining a large
delay. In summary, even in the steady phase, BBR should
increase its pacing gain when the bandwidth increases and
decrease its pacing gain when the delay increases.

III. BBR-FIT’S DESIGN

This section introduces combining RL techniques and the
BBR congestion control strategy. The proposed BBR-FIT
can automatically decide when and at what pacing rate to
probe bandwidth by interacting with the environment. Fig.
4 demonstrates the main framework of BBR-FIT. BBR-FIT
consists of three parts: 1-Monitoring block, 2-Underlying
BBR logic, and 3-RL agent. Specifically, the Monitoring
block collects network state information during a steady phase
and collates it into status and rewards to the RL agent.
According to these information and policy networks, the RL
agent selects a pacing gain for Underlying BBR logic. For
the RL agent, we select PPO to citeref:ppo, a classical RL
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Fig. 4. The main framwork of BBR-FIT.

algorithm, as the decision-maker for congestion control. At
the same time, the underlying BBR logic module informs
the Monitoring block to collect network state information.
During this cycle, the RL agent constantly interacts with the
network environment. Therein, Underlying BBR logic inherits
the congestion control mechanism of BBR, we no longer go
into detail.

A. Monitoring block

The Monitoring block works as an intermediary for BBR-
FIT. The RL agent is present at the application layer, while
the Underlying BBR belongs to the kernel. Therefore, the
RL agent and the Underlying BBR module cannot interact
directly. The Monitoring block address this problem by em-
ploying Netlink1, a Linux kernel interface for inter-process
communication between the kernel and user-space processes.
Through Netlink, the Monitoring block can extract network
state information from the Underlying BBR logic block and
update the input representing the environment for the RL
agent. In detail, after receiving the signal from the underlying
BBR logic module, the monitoring block starts monitoring
the incoming ACK packets to collect the required packets’
statistics. The statistics we considered are shown in Table I.

TABLE I
STATISTICS GENERATED BY MONITORING MODULE

Variables Comments
sr The ratio of sending rate to receiving rate
lr The average loss rate of packets
l The average latency of packets
lm The minimum value of packet delay during probe cycle
t The average throughput
d the time of a probe cycle
li the derivative of latency with respect to time

B. RL agent

The core of BBR-FIT is the RL agent. With the historical
environmental statistics generated by the monitoring module
in the Replay Buffer, the RL agent selects the appropriate pac-
ing gain for the Underlying BBR logic module to maximize

1http://netfilter.org/projects/libmnl

its reward. Like other typical RL problems, the RL agent for
BBR-FIT consists of State, Action, and Reward.

1) Action: In BBR-FIT, the RL agent takes action to
specify how the Underlying BBR logic module should adjust
its pacing gain in response to the observed network state.
Like the original BBR, BBR-FIT aims to work at the optimal
Kleinrock’s point, to achieve high throughput and low latency.
Inspired by [16], We express the action as changes to the
current rate and map the RL agent’s action based on Equation
(1) where a is 0.025 for dampening oscillations.

pt =

{
pt−1 ∗ (1 + α× at) at ≥ 0

pt−1/(1− α× at) at < 0
(1)

2) State: After the RL agent selects the action for the
Underlying BBR logic module, the Monitoring module ob-
serves the results generated by this action. It calculates them
as a state vector vt. A reasonable state space can help the
RL agent efficiently achieve its goals. Network environments
can be complicated, with dramatic bottleneck bandwidth and
latency changes. Only with enough information can the RL
agent accurately capture the performance of its actions. Many
state variables can characterize the network environment.
For instance, the mean interval between packets sent means
the interval between ACKs, the number of unacknowledged
packets, etc. Too many state variables would cause an increase
in computation cost and significant delay convergence. There-
fore, Appropriate state variables can help BBR-FIT capture
the performance of actions it takes and ensure a manageable
learning process. Based on the above discussion, We choose
a state space that includes the following parameters:

s: Ratio of sending rate to receiving rate. we consider s is
essential to determine whether the network is volatile.

li: Derivative of latency with respect to time. li can reflect
the fluctuation of the latency.

lr: Ratio of current latency to minimum average latency. It
directly reflects the degree of network congestion.

The RL agent’s selection of the next action was learned
from historical knowledge. We store a fixed-length history of
the above statistical vectors in the Replay Buffer. A bounded-
length and appropriate history enable our agent to make
responses that match the trends in network conditions. We
consider the history length used in Section III-C2 and choose
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our history length set to 10. the state at time t, st, is defined
in Equation (2). d is the delay between selecting a pacing rate
and collecting the results.

st = (vt−(10+d),...,vt−d
), (2)

3) reward: The reward function specifies the goal of BBR-
FIT. Like other RL CCA, BBR-FIT consider throughput (t),
latency (l) and loss rate (lr) as metrics. [21] pointed out
that there is a significant degradation in the performance of
RLCC when only one of the metrics is present in the reward
function. Moreover, when all three metrics in the reward
function are considered simultaneously, the protocol has the
desired performance. Therefore, we design the following
utility function:

reward = α× t− β × l − γ × lr. (3)

Therein, α, β, and γ represent the impact factor assigned
to the above metrics. Taking different impact factor com-
binations can achieve different application performance re-
quirements. A larger value of α meets the application’s need
for high throughput. While a larger value of β meets the
application’s need for low latency, a larger value of γ ensures
a low retransmission rate of the video transmission. To
make the BBR-FIT more versatile and accommodate various
network conditions, we use [21]’s best points in minimum
delay and maximum throughput, i.e.,α=0.2,β=0.6 and γ=0.2.

C. Learning algorithm

We employ Mahimahi to simulate a time-varying network
environment to train our RL agent. The training algorithm
is devoted to maximizing the long-term reward for the RL
agent. In BBR-FIT, the training algorithm is PPO, which can
be invoked with the stable-baselines python package.

1) BBR-FIT’s Learning Algorithm: The goal of the RL
agent is to select optimal action for a specific state to maxi-
mize learning reward behavior. During the training process
of BBR-FIT, the neural network produces the policy for
pt adjustment to map the current network state to the pT
to maximize the tradeoff between throughput and latency.
During time interval t, depending on the observed state st
and its policy πθ, the agent selects the action to obtain
the reward rt. The eventual aim is to find the optimal
policy π, with parameters θ, to maximize the total reward
JPPO(θ) = E[min(r(θ)Ât, clip(r(θ), 1− ϵ, 1 + ϵ)Ât)].

The agent algorithm of BBR-FIT is not only based on the
actor-critic framework but also belongs to the Policy Gradient
algorithm. It contains Critic (action-value function) and Actor
(new and old policy) parameterized by deep neural networks.
Actor uses new policy to interact with the network environ-
ment and records a sample τi = {st, at, rt} in Replay buffer
at each timestep t. After T timesteps, a set of trajectories
Dk = {τi} are collected. After that, Actor copies the new
policy’s parameters into the old one. The new policy and
Critic are learned using the data in the replay buffer. The
new policy update parameters are as follows:

Algorithm 1 BBR-FIT’s Learning Algorithm
Input: Initialize policy π with parameters θ0, initialize value
function parameters ϕ0;
for k ∈ {1, 2, . . .} do

Run policy π(θk) for T timesteps:
Select at from π(θk)
Execute pt to the steady phase according to Equ (1)
Observe the new states st+1 and the reward rt;
Store sample τi = {st, at, rt} into replay buffer

Collect set of trajectories Dk = {τi}
Compute advantages Ât =

∑
t′>t γ

t′−trt − Vϕ(st);
r(θ) = πθ(a|s)

πθold
(a|s)

πold ← πθ

Update the policy by maximizing the objective function
JPPO(θ) = E[min(r(θ)Ât, clip(r(θ), 1 − ϵ, 1 +

ϵ)Ât)]
Update policy parameters θk+1 with Equation 4
Update value function parameters ϕ with Equation 6

end for

θk+1 = argmax
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min(r(θ)Aπθk , g(∈, Aπθk )).

(4)
Ât =

∑
t′>t

γt′−trt − Vϕ(st). (5)

Where Aπθk is updated by critic according Equation (4).
Equation (6) denotes the process of Critic to update rules.

On-policy utilizes only the best short-term options and does
not maximize long-term returns. BBR-FIT solves this issue
by training the new policy with the old policy. As made in
the PPO, BBR-FIT imposes the constraint by forcing r(θ) to
stay within a small interval around 1, precisely [1− ϵ, 1+ ϵ],
where ϵ is a hyperparameter.

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Vϕ(st)− R̂t)
2. (6)

2) training: We stitch the traces in [22] into one trace
and simulate the time-varying network environment with
the Mahimahi simulator. BBR-FIT’s agent runs on a PC
(CPU: Intel i7-9700 3.00GHz×8; Memory: 16GB; OS: 64-bit
Ubuntu 16.04 with Linux kernel 4.13.10). We start training
round by round—a history length k impact the performance of
the RL agent. We train models with a history length varying
from 2 to 10. Fig. 5 shows the reward of these models. The
model obtains the greatest reward and convergence rate for k
= 10.

IV. EVALUATION

A. Experiment setup

We implement the proposed BBR-FIT in Linux 4.13.10. We
emphasize that BBR-FIT can automatically learn the correct
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pacing rate changing strategy for high throughput and low
latency in time-varying networks.

1) Topology: The network topology used for evaluation is
shown in Fig. 6, consisting of Senders, trace-driven simulator
(Mahimahi), and Receiver. The Mahimahi employ traces to
reproduce network conditions. We run “iperf -Z CCA” for
100s on one of the Senders and analyze the Mahimahi logs to
obtain the performance of CCA. For these evaluations, unless
mentioned, the network parameter settings follow Table II.

2) Traces: Here, we employ the traffic generation tool
Saturator2 to collect real-world traces. For covering a wide
range of network scenarios, time-varying networks and stable
networks are considered the two main scenarios. For time-
varying networks, we collect traces while riding the subway
in the center of Ningbo city. We generate four traces for these
evaluations: 1. 4G trace 2. 5G trace 3. a stable network with
24Mbps throughput. 4. wifi trace.

TABLE II
THE SIMULATION SETTINGS

Parameters Value
SimilationT ime 100s

Bandwidth 100Mbps
RTT 40ms

PacketSize 1500Bytes
ACKSize 40Bytes

PacketLossRate 0%
BufferSize 1BDP

3) Baseline algorithms: In this section, we compare pro-
posed BBR-FIT with various CCAs: CUBIC [6], PCC [16],
and variants of BBR covering different solutions. Among
them, the performance of CUBIC and PCC has been proven
through extensive literature. While the variants of BBR,
including BBR v2 [17] (Solve the problem of BBR generating
a lot of packet loss, deployed on Linux 5.4.6), Stateful-
BBR [18](Addressing BBT throughput degradation in wire-
less networks, deployed on Linux 5.4.6), Tsunami3(Improving
the performance of BBR in time-varying networks, deployed
on Linux 4.13.10), TCP D* [19](BBR using cwnd instead
of pacing rate for congestion control, deployed on Linux

2https://github.com/keithw/multisend/blob/master/sender/saturatr.cc
3https://github.com/dlxg/Linux-NetSpeed

5.4.6), BBRPlus4 (Improving the performance of BBR in
time-varying networks, deployed on Linux 4.19) and BBR-
ACD [20] (enhancing the internal-fairness of BBR, deployed
on Linux 4.13.10). In these evaluations, we use two main
performance metrics: average throughput and average latency.

B. Performance analysis

Fig. 7 shows the experimental results using different traces
in the Mahimahi simulator. There are six figures, each with
the horizontal axis indicating the latency and the vertical axis
indicating the average link utilization for each CCA. As the
CCA approaches the upward and rightward regions of the
graph, it indicates that the CCA can achieve higher latency
and throughput.

Table III shows the averaged results of the various CCAs
through all traces. BBR-FIT achieves the highest tradeoff
between latency and throughput among all CCAs. Highlights
include: BBR-FIT has 1.5×, 1.3×, and 1.5× higher average
link utilization compared to CUBIC, BBR, and BBR v2,
respectively. Moreover, compared to TCP D*, which achieves
the lowest latency, BBR-FIT increases the average link uti-
lization by about 4× while it only multiplies the latency by
0.28×.

TABLE III
STATISTICS GENERATED BY MONITORING MODULE

Algorithms Averaged Link Utilization Averaged Latency
CUBIC 0.556 70.04ms
PCC 0.73 74.66ms
BBR 0.614 64.86ms

Stateful −BBR 0.684 64.68ms
Tsunami 0.706 83.1ms
TCPD∗ 0.276 55.34ms
BBRPlus 0.688 72.04ms
BBRv2 0.544 67.12ms

BBR−ACD 0.592 63.84ms
BBR− FIT 0.858 61.86ms

BBR-FIT improves throughput significantly over others due
to its unique adaptive pacing rate mechanism. In this sense,
BBRPlus and Tsunami are similar to BBR-FIT because they
reduce the length of the probe cycle. However, they are
worse than BBR-FIT in latency. The main reason is that
BBRPlus randomly reduces the probe phase length without
the associated theoretical guidance to accommodate time-
varying networks. Tsunami increases the pacing gain of the
steady phase to 1.5, which senses network changes quickly
but inevitably causes a buildup of bottleneck buffer packets.
PCC is unsuitable for a time-varying environment due to the
long time to converge to its target. For BBR v2, CUBIC and
BBR-ACD are sensitive to packet loss, and inevitable loss in
a time-varying network environment can lead to throughput
degradation. Moreover, TCP D* obtains the lowest latency
among these CCAs. The main idea behind TCP D* is to
use cwnd instead of pacing rate to implement the mechanism

4https://github.com/cx9208/bbrplus
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(b) 5G trace
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(c) 24Mbps trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Latency (ms)

CUBIC
PCC
BBR

Stateful-BBR
Tsunami
TCP D*

BBRPlus
BBR v2

BBR-ACD
BBR-FIT

(d) T-Mobile with subway in C2TCP
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(e) T-Mobile with times in C2TCP
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Fig. 7. Comparing BBR-FIT with baseline algorithms through the throughput and latency across different networks.

of BBR. Therefore, TCP D* is more moderate than BBR.
Although TCP D* improves the delay performance, BBR-
FIT is about 4× better than its throughput performance while
increasing latency by about 1.1×. Although SBBR effectively
reduces latency and improves throughput compared to BBR,
BBR-FIT still outperforms it by about 3× in throughput
performance and 2× in latency performance. Meanwhile,
BBR-FIT automatically detects the bandwidth with a pacing
gain close to 1 for low latency in wired networks.

C. TCP Fairness

BBR-FIT likely coexists with other TCP flows in the bottle-
neck link. a scheme that is too aggressive may starve others,
while a scheme that is too conservative may starve for a long
time. Neither of them is a good candidate. We have proven
that BBR-FIT performs very well in different environments.
Does it get better performance by adding aggressiveness? We
will evaluate BBR-FIT’s TCP friendliness.

Specifically, a Sender sends a CUBIC flow to the Receiver.
We chose CUBIC because it is the default TCP in Linux
operating systems. At the same time, we send another flow
from another sender to the client. Each test is run three times,
and the throughput of both flows in the evaluation is recorded.
Since the performance of CUBIC increases as the buffer size
increases, we vary the switch buffer size from 1BDP to 2BDP
for a fair comparison.

Fig. 8 shows the throughput ratio of different CCAs to
CUBIC under different buffer sizes. The closer the throughput
ratio to 1, the better the CCA’s friendliness. Compared to the
well-performing CCAs in Table III, such as Tsunami, PCC,
and Stateful-BBR, BBR-FIT is more friendly. The BBR-FIT
is designed with the network congestion degree in mind. The

results demonstrate that BBR-FIT gets better performance not
by adding aggressiveness to penalize other TCP flows.
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Moreover, we investigate the behavior of BBR-FIT in
the presence of other BBR-FIT flows. We choose one of
the Senders to send the traffic to the Reciever. Every 50s,
we add another flow to the network destined for the same
Reciever and record the average throughput of each flow.
Each evaluation is completed in the 300s. The results are
shown in Fig. 9. both BBR-FIT and BBR achieve appropriate
fairness. The results illustrate that in the presence of other
BBR-FIT flows, the bandwidth will be shared fairly among
the competing flows.

D. The Impact Of RTT And Buffer Size

Deep buffer is the characteristic of the cellular network,
leading to the bufferbloat problem [24]. BBR-FIT is designed
to obtain both high throughput and low latency. Do different
RTT and buffer sizes have a big impact on BBR-FIT? To
answer this question, we change RTT and buffer size of the
simulation setting to see their impact on the performance
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Fig. 9. Throughput dynamics of different flows competing on an Internet
link for BBR and BBR-FIT.

of BBR-FIT. To make the results in each scenario more
convincing, we design the result as the ratio of the score
obtained by BBR-FIT to the score obtained by a CUBIC
flow in the same scenario. Therein, the score is calculated
by Throughput

Delay , which is presented in [23].

 0

 2

 4

 6

 8

 5  10  15  20  25  30  35  40N
o
rm

al
iz

ed
 P

o
w

er

Latency (ms)

BDP
2BDP

4BDP
6BDP

8BDP
10BDP

Fig. 10. BBR-FIT’s Normalized Power (Norm. to Cubic) across RTTs and
buffer sizes

Results are shown in Fig. 10, BBR-FIT can obtain a
minimum of 1.2× higher score than CUBIC and a maximum
of 6.2× higher score than CUBIC. In addition, the score of
CUBIC decreases due to its increased latency in the deep
buffer, while BBR-FIT maintains good performance, resulting
in an increase in the relative performance of BBR with respect
to CUBIC. This demonstrates the role of the reward function
(Equation (3)) in BBR-FIT, enabling BBR-FIT to take into
account both throughput, latency, and retransmission rate.

V. LINUX IMPLEMENTATION

In this section, we evaluate the performance of BBR-FIT
in the wireless network in Ningbo City. As shown in Fig.
11, the laptop and ALiCloud server are connected through
a router (Xiaomi A100). In the evaluation, the laptop is
responsible for sending data. Considering baseline algorithms
in Section IV, we use three performance metrics to evaluate

InternetInternet

XiaoMi A100 RouterLaptop AliCloud Server

Fig. 11. The topology used for Section V.
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Fig. 12. Average throughput and overall averaged jitter.

their performance: delay, jitter, and throughput. For reliability,
we perform each algorithm five times, all at the same time
and at a fixed location. Fig. 12 shows the overall averaged
throughput, delay, and jitter (defined as the same as [22]).

As expected, BBR-FIT obtains the maximum averaged
throughput, about 2× that of BBR. Also, the jitter and delay
of BBR-FIT are 1.1× and 1.2× higher than those of BBR,
respectively. The result demonstrates that BBR-FIT, instead of
simply increasing the aggressiveness to get higher throughput
like Tsunami.

VI. RELATED WORK

We present congestion control mechanisms from two as-
pects: Traditional CCAs and Deep RL-based CCAs.

A. Traditional CCAs

Recently, Many CCAs have been developed to laser-focus
on a specific network. For instance, STCC targets data center
networks while TCP-WBQ [25] works for cellular networks.
Many computing resources and services are deployed on dat-
acenter networks (DCNs) to provide a high QoE. Traditional
CCAs do not consider the network heterogeneity between data



centers [26], resulting in severe network performance degra-
dation. STCC adaptively calculates optimal CCA parameters
for each flow by periodically monitoring network information
through the software-defined networking.

Cellular networks have highly volatile channels, rapidly
fluctuating bandwidth, random packet loss, etc. These unique
characteristics make it challenging for TCP to achieve low
latency and high throughput in cellular networks. Traditional
TCP variants perform poorly in cellular networks. TCP-WBQ
attributes the problem to the inability to estimate the degree of
congestion for fine-grained congestion control. To address this
problem, TCP-WBQ constructs a backlog queueing model to
define congestion and random packet loss, thus maintaining a
tradeoff between high throughput and congestion avoidance.
A particular case among these algorithms is BBR. Google
tried to extend it to a generic CCA for all network scenarios.

B. Deep reinforcement learning based CCAs

A CCA can be summarized as mapping the sender-aware
network information into predefined actions. The performance
degrades significantly when the sender-perceived network
state differs significantly from the actual network state. Com-
pared to learning-based CCA, manual tuned CCA adapts to
new environments and requires a lot of pre-experimentation.

Deep RL has been applied to network systems. The strength
of RL lies in its ability to make decisions based on experience
without manually designing strategies. To address the problem
of slow adaptation for TCP to network changes, [27] proposes
a solution. It use network information from endpoints in a
software-defined environment to infer congestion. However,
as its authors acknowledge, it requires extended analysis
and manipulation to improve the understanding of the en-
vironment. To resolve the above problem, TCP-NeuRoc [9]
combines the Deep Deterministic Policy Gradient with a
probabilistic exploration framework. TCP-NeuRoc achieve
the best throughput-latency tradeoff. Unlike others, instead of
requiring an exact network model and training data, it learns
from experience using measurement features to determine
how to adjust the congestion window size.

VII. CONCLUTION

In this paper, we address the low performance of the BBR
algorithm in time-varying networks and propose a learning-
based CCA, called BBR-FIT. By combining the congestion
control strategy of BBR and the wisdom of RL techniques,
the sensitivity of BBR-FIT to bandwidth changes is improved.
Extensive testbed experiments and MahiMahi simulations
demonstrate that compare to BBR, BBR-FIT is adaptive and
improves link utilization by 2× without increasing the latency.
We conclude that BBR-FIT combined with RL can adapt to
time-varying network scenarios.
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