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Abstract—Traditional simulators cannot meet the require-

ment of modeling large scale networks due to their deficiency in 
scalability. In this paper, we present a new simulator, namely 
EasiSim, for sensor networks on a large scale. EasiSim is fea-
tured by a structure-based modeling method and a hierarchical 
organization of the relevant functional components, including 
nodes, topology and scenario. The nodes are organized into a 
three-dimensional sorted list (3D list), which enables the node to 
process all the concurrent events in one batch, and therefore the 
running time may be reduced by an order of magnitude. Inte-
grated with the other two upper layer components, which are 
topology and scenario, the proposed node organization method 
based on the 3D list makes the simulator not only scalable but 
also extensible. Moreover, we propose a visualization scheme 
based on a Client/Server model which separates the graphical 
user interface (GUI) from the simulation engine, and therefore 
the scalability of the simulator will not be decreased. The per-
formance of EasiSim is evaluated through extensive simulations 
and compared with NS2 in terms of real running time and mem-
ory usage. The results show that EasiSim takes less time and less 
memory than NS2 to complete simulations with the same num-
ber of nodes during a same configured simulation time. 
  

I. INTRODUCTION 

With the development of MEMS and wireless communica-
tion, the sensor network has become a hot research topic. 
Simulation is an effective approach, which has been widely 
adopted by the network researchers to evaluate the perform-
ance of networks. So far, a series of simulation tools have 
been developed to ease the design and deployment of network 
protocols. Most of these existing simulators are established 
for traditional wired or wireless networks, so they cannot ful-
fill the requirements of modeling the sensor network precisely 
and running large scale experiments efficiently. Following is 
a brief overview on the existing network simulators. 

A. Related works 
NS-2 [1] is a discrete event driven general-purpose network 

simulator originally developed for modeling the transport 
control protocols and routing algorithms of wide-area Internet. 
The CMU Monarch project’ extension made NS support the 
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wireless and mobile networks. Although NS has evolved sub-
stantially over the past few years, the basic architecture re-
mains the same. The split-programming model and object-
oriented architecture make it extensible, but no so scalable. 

OPNET [2] is another discrete event driven general-
purpose network simulator. OPNET is featured by its GUI-
based modeler, which provides an intuitive way to customize 
modules, like different sensor-specific hardware unit. How-
ever, the GUI-based modeler sacrifices simulation efficiency 
for convenience of customization. Therefore, it suffers from 
the same problem of scalability as NS-2. 

Other general-purpose simulation platforms, like OM-
NeT++ [3] and J-Sim [4], are also widely used in simulating 
the traditional wired and wireless networks. Since these two 
simulators were designed from the beginning with module 
reusability in mind, they put less emphasis on the problem of 
scalability.  

Based on the simulation framework for the sensor network 
(SensorSim) proposed by Park [5], all the above mentioned 
general-purpose network simulators have been extended to 
support for the sensor networks, but never modified the archi-
tecture of the corresponding simulator to address the problem 
of scalability. 

The problem of scalability is more severe for bit-level (or 
instruction-level) emulators, like TOSSIM [6] and ATEMU 
[7], than for the above mentioned packet-level simulators.  

B. Our contributions 
In this paper, we design and implement a new simulator, 

namely EasiSim, specifically for the sensor network with the 
scalability as our first goal. Differing from traditional object-
oriented and component-based simulators, EasiSim is a dis-
crete event driven, structure-based simulator. The main con-
tributions of this paper can be summarized into following 
three aspects. 

1. To enables the node to process all the concurrent events 
in one batch, we propose a three-dimension sorted linked 
list (3D list) to organize all the nodes into a hyper-
structure called topology. In such way, the number of 
events generated during simulation will be reduced by an 
order of magnitude. 

2. To constitute the simulator in an extensible way, we de-
sign a scenario structure to integrate the topology with 
all the other components of the simulator, such as dis-
crete event queue, clock. The hierarchical organization 
of the components, including nodes, topology and sce-



nario, makes EasiSim not only scalable but also extensi-
ble. 

3. To show the running progress of the simulation, we pro-
pose a visualization scheme based on a client-server 
model, which separate the graphical user interface (GUI) 
from the simulation modules and run them in a distrib-
uted way. Therefore, our proposed visualization scheme 
will not decrease the performance of the simulator in 
term of scalability. 

The rest of the paper is organized as follows. We describe 
the node organization in Session II.  Details of integrating the 
components of the simulator are presented in Session III. In 
Session IV, we elaborate on the visualization scheme of the 
simulator. We evaluate the performance of the simulator in 
Session V. At last, we make a brief conclusion and point out 
the future works in Session VI and VII respectively. 

II. ORGANIZATION OF THE NODES 

A. Basic principle 

 
We design our simulator based on a sequential, discrete 

event driven framework. Like what the Fig.1 depicts, the 
simulator mainly consists of following five components. 

1. Clock is a 64-bit integer to represent the current time of 
the simulator.  

2. Random number generator is a collection of functions 
to generate the commonly used random numbers, such 
as uniformly distributed numbers. 

3. Entity is the object to be simulated. For a sensor net-
work, the entity is nothing but a collection of nodes. 

4. Discrete event queue is a sorted event list ordered by 
the time when the event is scheduled to be processed. 

5. Event dispatcher is a procedure responsible for fetching 
the latest event to be processed from the head of the dis-
crete event queue and invoking the corresponding event 
processing procedure.  

The time flow and event flow link the components together. 
It is worth noticing that: (1) the clock of the simulator should 
be updated to the scheduled time of the dispatched event, be-
fore invoking the corresponding event processing procedure; 
(2) in the event processing procedure, states of more than one 
related nodes may be required to be updated concurrently and 
new future events are supposed to be scheduled.  

In the object-oriented and component-based network simu-
lator, each node is modeled as an object. To update states of 
several nodes concurrently, it is required to generate some 

concurrent events and invoke all the corresponding nodes’ 
methods in sequence. This can lead to lots of overheads in 
term of running time and memory usage. Radio propagation is 
such an event which needs update the states of all its 
neighbors, and it accounts for a large proportion of events in 
the sensor network. So we propose a new modeling method to 
establish an efficient structure to support updating several 
nodes’ states in one batch.  

We model each node in the sensor network as a structured 
variable rather than an object. Based on the node structure, we 
design a three-dimension sorted linked list to organize all the 
nodes into a hyper-structure called topology. Following are 
the details of the node structure and the topology structure. 

B. Node structure and topology structure  

 

 
Each node is modeled as a variable with the same structure 

as the Fig.2 shows. The foremost three fields refer to the type, 
identity and locate of the node respectively. The next four 
fields contain all the necessary information about the settings 
and states of the protocol in each layer, which are followed by 
six pointers to link the nodes into a three-dimension sorted list 
(3D list). Each dimension is a doubly linked list sorted by the 
identity, the x-coordinate and the y-coordinate of the node 
respectively. This three-dimension sorted linked list is defined 
as a structure named topology. In the topology structure, it 
contains three couples of pointers to indicate the head and tail 
of each dimension of the sorted linked list.  The last field in 
the node structure is just the pointer to the topology, which 
makes the node able to operate on the global information or 
any other node conveniently.  

When initializing the simulator, each node in the sensor 
network is assigned a unique integer number as its identity, 
and put in a location expressed by the coordinates. According 
to the values of these attributes, the node is inserted into the 
three-dimension sorted linked list in ascending order, while 
the pointers in the topology structure keep track of the head 
and tail of each dimension of the list. 

C. Advantages of the organization 
Supposing N nodes are uniformly scattered in a square area 

of S square meters, and the transmission range of each node is 

Fig.2  Definition of the node structure 

struct _node{ 
 NODETYPE nodeType; 
 NODEID  nodeID; 
 COORDINATE locate; 
 

 PHYDATA phyData; 
 MACDATA macData; 
 ROUTEDATA routeData; 
 APPDATA appData; 
 

 struct _node *nextNodeByID; 
 struct _node *preNodeByID; 
 struct _node *nextNodeByX; 
 struct _node *preNodeByX; 
 struct _node *nextNodeByY; 
 struct _node *preNodeByY; 
 

 PTOPO pTopo; 
}; 
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Fig. 1  Component architecture of the sensor network simulator 



R meter. If the radio propagation is modeled as disk, it is re-
quired to compute distances from the transmitting node to all 
the nodes in the square area in the traditional simulators. 

 
With support of the 3D list, when a propagation event is 

scheduled during simulation running time, the transmitting 
node can be found in the list quickly by its identity, and then 
all its neighbors can be determined rapidly by traversing the 
list and calculating the distance (or signal attenuation) be-
tween the current node (receiving node) and the transmitting 
node. Following steps illustrated in the Fig.3 are involved to 
determine the set of nodes affected by the propagation. 

1. Locate the transmitting node in the list by any fast seek-
ing algorithm.  

2. Traverse forward and backward from the transmitting 
node and compare the x-coordinate and y-coordinate of 
the current node in the list and the transmitting node to 
determine the nodes in the intersection region of the 
light gray area  (marked as A) and the dark gray area 
(marked as area B). Based on the sorted list, only these 
nodes in the light area are involved to compare its coor-
dinates with the transmitting node. So the number of 
nodes involved in the step is reduced to 
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3. Compute the distance from the transmitting node to each 
of the nodes in the intersection region of the light gray 
area and the dark gray area, to see whether it can hear 
from the transmitting node. The number of nodes in-
volved in the step is reduced further to ( )
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Let T1 be the benchmark of computation time, which is the 

time to do addition or subtraction operation. Multiplication 
operation time and relation operation time is p times and q 
times as much as the benchmark respectively. Both p and q 
are larger than one. Since it involves two subtraction opera-
tions and two comparison operations to determine whether 
one node is in the intersection area of A and B, the time to 
check all the nodes in the light gray area is ( ) 1T12

2
⋅+⋅⋅⋅ q

S
R

N . 

For the similar reason, the time to determine the set of nodes 
that can hear from the transmitting node is ( )
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So the computational time to determine the neighbors of 

the transmitting node is reduced by a percentage of 
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qR , with the support of the 3D list. Take the 

above scenario as example, the time can be reduced by about 
88.9%, when p is 2 and q is 3.  

III. INTEGRATION OF THE COMPONENTS 

 
The architecture to integrate the components of the simula-

tor is presented in Fig.4. As the entity of the simulator, the 
topology is established by organizing all the nodes in the net-
work into a three dimension sorted linked list. Each dimen-
sion is a doubly linked list, whose head and tail are indicated 
by a pointer respectively.  In each node, there also a pointer to 
the topology structure, which makes the node operate on the 
other nodes conveniently.  

Besides the topology, other components such as event list 
and simulation clock are integrated into an upper-layer struc-
ture named scenario. So the scenario structure mainly in-
cludes three fields, which are topo, cur_time and fel. It is 
worth noticing that in the topology structure, there exists a 
pointer to the scenario. Through this pointer, nodes can access 
to all the data in the scenario directly. The cur_time is a 64-bit 
integer to indicate the current time of the simulator. fel is the 
future event list to organize all the events scheduled to be 
processed in the future. In the discrete event driven simulator, 
events are dynamically generated and released to drive the 
running of the simulator, which will involve lots of memory 
process, so the organization of the events should also be paid 
attention. 

A. Structure of the event list 
The traditional approach of managing the events is allocat-

ing memory once a new event is scheduled, and releasing it 
once it is processed. Since memory allocating operation is 
time consuming, we structure the event list as a 2-Dimension 
linked list to reduce the frequency of allocating memory. Each 
dimension is a sorted linked list. One is for organizing the 
future events (named scheduled list), and the other is for col-
lecting the released events (named freed list). When a new 
event is to be generated, the freed list is firstly checked to see 
whether there is a freed event that can be “reused”, if yes, the 
event will be renewed and moved to scheduled list, otherwise, 
a system call is invoked to allocate memory and inserted into 
the scheduled list. 

Supposing the instant number of events scheduled to be 
processed at time t during running time is Nt, the total times to 
invoke system calls for the events is max{Nt} with the aid of 

Fig. 3  The set of nodes affected by the propagation. 
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the freed list, and sum{Nt} without the aid of the freed list. 
The peak volume of memory allocated for the events are both 
max{Nt}*L for the simulator, where L is length of the event.  

So the structure of the event list can not only reduce the 
frequency of allocating memory, but also inherits the merit of 
the traditional approach in memory usage. 

IV. VISUALIZATION OF THE SIMULATOR 

Visualization is also an important component of the simula-
tor, though it is not indispensable. The traditional way to im-
plement visualization is off-line replaying, like NS2/Nam, 
which displays the flow of packets according to the trace file. 
Because the replaying depends on the trace file dumped dur-
ing the simulation, the off-line approach is time consuming 
and may influence the performance of the simulator in terms 
of scalability. Other tools integrate the graphic user interface 
with the simulation engine, which has bad effects on the scal-
ability of the simulator as well. 

We propose an on-line approach to show the progress of 
simulation by a separate process locally or remotely, based on 
a Client/Server model. A server process, which can be viewed 
as the graphic user interface (GUI) of the simulator, is firstly 
launched in the local machine or a remote machine. If the user 
requests to display the process of the packet flow or to visual-
ize the states of the nodes, he can tell the simulator to connect 
the server before starting running by specifying the address 
and port on which the server is listening. During simulation 
running, the server process is responsible for receiving and 
parsing the packets encapsulating the requests of visualization, 
which are generated and sent by the client.  

For example, when the simulator finishes initialization, all 
the created nodes need to be displayed in the GUI. So the 
simulator will send the packets formatting like Node sensor 0 
100.0 200.0 to the server. The first word Node in the packet 
tells the GUI to draw a node, and sensor indicates the type of 
the node. Different types of nodes, such as sensors and sink, 
may be illustrated by different shapes in the GUI. The number 
following the type of the node is its identity. When the server 
receives the packet, it will draw a circle or a rectangle in the 
coordinate of (100.0, 200.0) to represent the node. Other 
packet formats are also defined to visualize other objects in 
the simulator, such as radio propagation, link establishment 
and packet flowing.  

In such way, the visualization of the simulator can be im-
plemented without making significant modification to the 
established simulation engine. Since the GUI server can be 
run in a remote machine and the simulator can communicate 
with it in asynchronous way, the visualization will not reduce 
the performance of the simulator a lot.  

V. PERFORMANCE EVALUATION 

The performance of the proposed simulator has been evalu-
ated in terms of following metrics. 

1. Real running time: real running time is the direct indi-
cator of scalability. It is obvious that the real running 
time can be influenced by the number of nodes and the 
simulation time. So we will firstly examine the trend of 
change on real running time as the number of nodes in-

creases, and then influence of the configured simulation 
time on the real running time will be examined.  

2. Memory usage: total memory required to run simulation 
can also influence the scalability of the simulator, since 
more memory usage means more frequent operations on 
the system resource, which is very time consuming. 

Performances of the EasiSim are compared with that of 
NS2 in terms of the above described metrics.  

A. Real running time versus number of nodes 
The experiments were set up by putting 10 to 1000 nodes 

uniformly in a 1000 by 1000 meter square field. The trans-
mission range of the node is 250 meters. The node in the left 
bottom corner is chosen to collect data and send the readings 
to the sink, which is in the right top corner of the field. The 
sensor nodes were configured to send the readings every 1 
minute, and the simulation time is one hour. The length of the 
packet is 36 bytes, and the physical rate of the node is 19.2 
kbps. All the nodes use the B-MAC (without sleeping) and 
route the data by flooding. Simulations were run on a Pen-
tium-IV3.0 GHz processor with 1 Gbytes of RAM memory. 
The GUI ran in a remote machine. 

 
We compute the run time by recording the time when the 

simulator finished initialization, and when the simulator ends. 
All the results are the average of 5 repetitions to reduce ran-
dom fluctuation. As Fig. 5 shows, for both EasiSim and NS2, 
the running times are below 5 second when less than 100 
nodes are put in the field. As more nodes are added to the 

Fig. 6  Real running time versus simulation time 
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Fig. 5  Real running time versus number of nodes 
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scenario, the simulation times increase in higher linear rates. 
This can be attributed to the event explosion when the nodes 
become denser. However, the run time of EasiSim increases 
much more slowly than that of NS2. This can be owed mainly 
to the efficient approach to merge the concurrent events de-
scribed in session II.  

B. Real running time versus simulation time 
In this experiment, we put 10 nodes uniformly in a 1000 by 

1000 meter square field, and run the simulation with the same 
parameters as described in the former experiment for 1 hour 
to 10 hours.  

As illustrated by Fig.6, the running times on both EasiSim 
and NS2 rise with the increase of simulation time, because 
more events are generated to be processed. However, the run-
ning time of EasiSim is much less than that of NS2. Since the 
profits gained from event mergence can be neglected here, we 
can attribute the advantage of EasiSim to its structure based 
modeling method. Because all the data representing the state 
of each node is stored in a structured variable, rather than in 
an object, they can be accessed directly by the processing 
procedure without invoking other methods, the processing 
time can be reduced by a lot.  

C. Memory usage 

 
The setting up of the experiments to evaluate the memory 

usage of the simulator is the same as what described in the 
part A of this section. Here, we record the volumes of mem-
ory space allocated for the nodes and the events in the simula-
tor. Fig.7 shows the results of the experiments. We can see 
that EasiSim is always more memory efficient than NS2. The 
main reason leading to the result can be concluded as follows. 

In NS2, every component of the node is modeled by an ob-
ject, and the components then comprise the node. Each object 
in NS has a shadow in memory, so NS2 need twice more 
spaces than EasiSim to store the nodes in the network.  

VI. CONCLUSIONS 

This paper presented a new simulator called EasiSim, for 
simulating sensor networks at large scales.  

EasiSim is featured by the structure-based modeling 
method and the hierarchical organization of the components. 
As the fundamental components, the node structures are 
firstly organized into a three-dimension sorted linked list. 
Pointers to the head and the tail of each dimension of the 3D 

list are then organized into the hyper-structure called topology, 
through which all the nodes involved in the current event can 
be operated directly. In such way, some concurrent events can 
be merged and thereby the running time can be reduced by an 
order of magnitude. The topology structure is then integrated 
with other components of the simulator, such as the discrete 
event queue and the simulation clock, into the top-level struc-
ture named scenario.  

At last, we evaluate the scalability of our designed simula-
tor in terms of real running time and memory usage. The re-
sults show that it takes less time and less memory for EasiSim 
than for NS2 to complete simulations with the same number 
of nodes and configured simulation time.  

In addition, we proposed a visualization scheme based on a 
client-server mode, which enable the simulation and GUI 
processes to run in a distributed way. Therefore, our proposed 
visualization scheme is supposed not to decrease the perform-
ance of the simulator in term of scalability. 

VII. FUTURE WORKS 

So far, we have established a scalable simulation platform 
for sensor networks. To evaluate the performance of the simu-
lator, we also implemented the disk radio propagation module, 
the B-MAC protocol and the flooding protocol in the simula-
tor.  

As for our future works, we plan to extend the modules, in-
cluding the radio channel modules, the environment modules 
and the networking protocol modules, to make the simulator 
support for modeling the sensor networks more precisely. A 
practical battery and energy module is also supposed to be 
implemented in the future days, since it is of vital importance 
for modeling the power efficiencies of different protocols and 
life time of the sensor nodes. 

As more modules added to EasiSim, the scalability of the 
simulator will be reevaluated and its performance will be im-
proved step by step. Besides that, the visualization scheme 
will be refined and its effects on the scalability of the simula-
tor will be investigated more deeply. 
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Fig.7  Memory usage versus number of nodes 
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