
EasiSim: A Scalable Simulation Platform for
Wireless Sensor Networks

Haiming Chen12, Li Cui1†, He Zhu12
1Institute of Computing Technology, Chinese Academy of Sciences

2Graduate School of the Chinese Academy of Sciences, Beijing, China
{chenhaiming, lcui, zhuhe}@ict.ac.cn

Changcheng Huang3
3Department of Systems and Computer Engineering, Carleton University,

Ottawa, Canada
huang@sce.carleton.ca

Abstract—Traditional simulators cannot meet the require-

ment of modeling large scale networks due to their deficiency in
scalability. In this paper, we present a new simulator, namely
EasiSim, for sensor networks on a large scale. EasiSim is fea-
tured by a structure-based modeling method and a hierarchical
organization of the relevant functional components, including
nodes, topology and scenario. The nodes are organized into a
three-dimensional sorted list (3D list), which enables the node to
process all the concurrent events in one batch, and therefore the
running time may be reduced by an order of magnitude. Inte-
grated with the other two upper layer components, which are
topology and scenario, the proposed node organization method
based on the 3D list makes the simulator not only scalable but
also extensible. Moreover, we propose a visualization scheme
based on a Client/Server model which separates the graphical
user interface (GUI) from the simulation engine, and therefore
the scalability of the simulator will not be decreased. The per-
formance of EasiSim is evaluated through extensive simulations
and compared with NS2 in terms of real running time and mem-
ory usage. The results show that EasiSim takes less time and less
memory than NS2 to complete simulations with the same num-
ber of nodes during a same configured simulation time.

I. INTRODUCTION

With the development of MEMS and wireless communica-
tion, the sensor network has become a hot research topic.
Simulation is an effective approach, which has been widely
adopted by the network researchers to evaluate the perform-
ance of networks. So far, a series of simulation tools have
been developed to ease the design and deployment of network
protocols. Most of these existing simulators are established
for traditional wired or wireless networks, so they cannot ful-
fill the requirements of modeling the sensor network precisely
and running large scale experiments efficiently. Following is
a brief overview on the existing network simulators.

A. Related works
NS-2 [1] is a discrete event driven general-purpose network

simulator originally developed for modeling the transport
control protocols and routing algorithms of wide-area Internet.
The CMU Monarch project’ extension made NS support the

This paper is supported in part by the National Basic Research Program of
China (973 Program) under Grant No. 2006CB303000, and National High
Technology Research and Development Program of China (863 Program)
under Grant No. 2007AA01Z2A9, and NSFC project under Grant No.
60572060.
† Corresponding author, Tel: +86-10-6260 0742, Fax: +86-10-6256 2701

wireless and mobile networks. Although NS has evolved sub-
stantially over the past few years, the basic architecture re-
mains the same. The split-programming model and object-
oriented architecture make it extensible, but no so scalable.

OPNET [2] is another discrete event driven general-
purpose network simulator. OPNET is featured by its GUI-
based modeler, which provides an intuitive way to customize
modules, like different sensor-specific hardware unit. How-
ever, the GUI-based modeler sacrifices simulation efficiency
for convenience of customization. Therefore, it suffers from
the same problem of scalability as NS-2.

Other general-purpose simulation platforms, like OM-
NeT++ [3] and J-Sim [4], are also widely used in simulating
the traditional wired and wireless networks. Since these two
simulators were designed from the beginning with module
reusability in mind, they put less emphasis on the problem of
scalability.

Based on the simulation framework for the sensor network
(SensorSim) proposed by Park [5], all the above mentioned
general-purpose network simulators have been extended to
support for the sensor networks, but never modified the archi-
tecture of the corresponding simulator to address the problem
of scalability.

The problem of scalability is more severe for bit-level (or
instruction-level) emulators, like TOSSIM [6] and ATEMU
[7], than for the above mentioned packet-level simulators.

B. Our contributions
In this paper, we design and implement a new simulator,

namely EasiSim, specifically for the sensor network with the
scalability as our first goal. Differing from traditional object-
oriented and component-based simulators, EasiSim is a dis-
crete event driven, structure-based simulator. The main con-
tributions of this paper can be summarized into following
three aspects.

1. To enables the node to process all the concurrent events
in one batch, we propose a three-dimension sorted linked
list (3D list) to organize all the nodes into a hyper-
structure called topology. In such way, the number of
events generated during simulation will be reduced by an
order of magnitude.

2. To constitute the simulator in an extensible way, we de-
sign a scenario structure to integrate the topology with
all the other components of the simulator, such as dis-
crete event queue, clock. The hierarchical organization
of the components, including nodes, topology and sce-

nario, makes EasiSim not only scalable but also extensi-
ble.

3. To show the running progress of the simulation, we pro-
pose a visualization scheme based on a client-server
model, which separate the graphical user interface (GUI)
from the simulation modules and run them in a distrib-
uted way. Therefore, our proposed visualization scheme
will not decrease the performance of the simulator in
term of scalability.

The rest of the paper is organized as follows. We describe
the node organization in Session II. Details of integrating the
components of the simulator are presented in Session III. In
Session IV, we elaborate on the visualization scheme of the
simulator. We evaluate the performance of the simulator in
Session V. At last, we make a brief conclusion and point out
the future works in Session VI and VII respectively.

II. ORGANIZATION OF THE NODES

A. Basic principle

We design our simulator based on a sequential, discrete

event driven framework. Like what the Fig.1 depicts, the
simulator mainly consists of following five components.

1. Clock is a 64-bit integer to represent the current time of
the simulator.

2. Random number generator is a collection of functions
to generate the commonly used random numbers, such
as uniformly distributed numbers.

3. Entity is the object to be simulated. For a sensor net-
work, the entity is nothing but a collection of nodes.

4. Discrete event queue is a sorted event list ordered by
the time when the event is scheduled to be processed.

5. Event dispatcher is a procedure responsible for fetching
the latest event to be processed from the head of the dis-
crete event queue and invoking the corresponding event
processing procedure.

The time flow and event flow link the components together.
It is worth noticing that: (1) the clock of the simulator should
be updated to the scheduled time of the dispatched event, be-
fore invoking the corresponding event processing procedure;
(2) in the event processing procedure, states of more than one
related nodes may be required to be updated concurrently and
new future events are supposed to be scheduled.

In the object-oriented and component-based network simu-
lator, each node is modeled as an object. To update states of
several nodes concurrently, it is required to generate some

concurrent events and invoke all the corresponding nodes’
methods in sequence. This can lead to lots of overheads in
term of running time and memory usage. Radio propagation is
such an event which needs update the states of all its
neighbors, and it accounts for a large proportion of events in
the sensor network. So we propose a new modeling method to
establish an efficient structure to support updating several
nodes’ states in one batch.

We model each node in the sensor network as a structured
variable rather than an object. Based on the node structure, we
design a three-dimension sorted linked list to organize all the
nodes into a hyper-structure called topology. Following are
the details of the node structure and the topology structure.

B. Node structure and topology structure

Each node is modeled as a variable with the same structure

as the Fig.2 shows. The foremost three fields refer to the type,
identity and locate of the node respectively. The next four
fields contain all the necessary information about the settings
and states of the protocol in each layer, which are followed by
six pointers to link the nodes into a three-dimension sorted list
(3D list). Each dimension is a doubly linked list sorted by the
identity, the x-coordinate and the y-coordinate of the node
respectively. This three-dimension sorted linked list is defined
as a structure named topology. In the topology structure, it
contains three couples of pointers to indicate the head and tail
of each dimension of the sorted linked list. The last field in
the node structure is just the pointer to the topology, which
makes the node able to operate on the global information or
any other node conveniently.

When initializing the simulator, each node in the sensor
network is assigned a unique integer number as its identity,
and put in a location expressed by the coordinates. According
to the values of these attributes, the node is inserted into the
three-dimension sorted linked list in ascending order, while
the pointers in the topology structure keep track of the head
and tail of each dimension of the list.

C. Advantages of the organization
Supposing N nodes are uniformly scattered in a square area

of S square meters, and the transmission range of each node is

Fig.2 Definition of the node structure

struct _node{
 NODETYPE nodeType;
 NODEID nodeID;
 COORDINATE locate;

 PHYDATA phyData;
 MACDATA macData;
 ROUTEDATA routeData;
 APPDATA appData;

 struct _node *nextNodeByID;
 struct _node *preNodeByID;
 struct _node *nextNodeByX;
 struct _node *preNodeByX;
 struct _node *nextNodeByY;
 struct _node *preNodeByY;

 PTOPO pTopo;
};

ClockDiscrete Events

Event Dispatcher Entity
Time Flow

Event Flow

Random
Number

Generator

Fig. 1 Component architecture of the sensor network simulator

R meter. If the radio propagation is modeled as disk, it is re-
quired to compute distances from the transmitting node to all
the nodes in the square area in the traditional simulators.

With support of the 3D list, when a propagation event is

scheduled during simulation running time, the transmitting
node can be found in the list quickly by its identity, and then
all its neighbors can be determined rapidly by traversing the
list and calculating the distance (or signal attenuation) be-
tween the current node (receiving node) and the transmitting
node. Following steps illustrated in the Fig.3 are involved to
determine the set of nodes affected by the propagation.

1. Locate the transmitting node in the list by any fast seek-
ing algorithm.

2. Traverse forward and backward from the transmitting
node and compare the x-coordinate and y-coordinate of
the current node in the list and the transmitting node to
determine the nodes in the intersection region of the
light gray area (marked as A) and the dark gray area
(marked as area B). Based on the sorted list, only these
nodes in the light area are involved to compare its coor-
dinates with the transmitting node. So the number of
nodes involved in the step is reduced to

S
RN

S
SRN 22

⋅=
⋅

⋅ .

3. Compute the distance from the transmitting node to each
of the nodes in the intersection region of the light gray
area and the dark gray area, to see whether it can hear
from the transmitting node. The number of nodes in-
volved in the step is reduced further to ()

S
R

N
22

⋅ .
Let T1 be the benchmark of computation time, which is the

time to do addition or subtraction operation. Multiplication
operation time and relation operation time is p times and q
times as much as the benchmark respectively. Both p and q
are larger than one. Since it involves two subtraction opera-
tions and two comparison operations to determine whether
one node is in the intersection area of A and B, the time to
check all the nodes in the light gray area is () 1T12

2
⋅+⋅⋅⋅ q

S
R

N .

For the similar reason, the time to determine the set of nodes
that can hear from the transmitting node is ()

()[] 1T13
2 2

⋅++⋅⋅ qpS
R

N .
So the computational time to determine the neighbors of

the transmitting node is reduced by a percentage of

()
()[] 100

24
33

14 ×+
++

+
S
R

qpS
qR , with the support of the 3D list. Take the

above scenario as example, the time can be reduced by about
88.9%, when p is 2 and q is 3.

III. INTEGRATION OF THE COMPONENTS

The architecture to integrate the components of the simula-

tor is presented in Fig.4. As the entity of the simulator, the
topology is established by organizing all the nodes in the net-
work into a three dimension sorted linked list. Each dimen-
sion is a doubly linked list, whose head and tail are indicated
by a pointer respectively. In each node, there also a pointer to
the topology structure, which makes the node operate on the
other nodes conveniently.

Besides the topology, other components such as event list
and simulation clock are integrated into an upper-layer struc-
ture named scenario. So the scenario structure mainly in-
cludes three fields, which are topo, cur_time and fel. It is
worth noticing that in the topology structure, there exists a
pointer to the scenario. Through this pointer, nodes can access
to all the data in the scenario directly. The cur_time is a 64-bit
integer to indicate the current time of the simulator. fel is the
future event list to organize all the events scheduled to be
processed in the future. In the discrete event driven simulator,
events are dynamically generated and released to drive the
running of the simulator, which will involve lots of memory
process, so the organization of the events should also be paid
attention.

A. Structure of the event list
The traditional approach of managing the events is allocat-

ing memory once a new event is scheduled, and releasing it
once it is processed. Since memory allocating operation is
time consuming, we structure the event list as a 2-Dimension
linked list to reduce the frequency of allocating memory. Each
dimension is a sorted linked list. One is for organizing the
future events (named scheduled list), and the other is for col-
lecting the released events (named freed list). When a new
event is to be generated, the freed list is firstly checked to see
whether there is a freed event that can be “reused”, if yes, the
event will be renewed and moved to scheduled list, otherwise,
a system call is invoked to allocate memory and inserted into
the scheduled list.

Supposing the instant number of events scheduled to be
processed at time t during running time is Nt, the total times to
invoke system calls for the events is max{Nt} with the aid of

Fig. 3 The set of nodes affected by the propagation.

0

100

200

300

400

500

600

0 100 200 300 400 500 600
Sx

S
y

B

A

R

Fig. 4 Architecture to integrate the components of the simulator

Topology

Scenario

headNodeByID
……

tailNodeByY

topo

pTopo

pScen

Nodes

the freed list, and sum{Nt} without the aid of the freed list.
The peak volume of memory allocated for the events are both
max{Nt}*L for the simulator, where L is length of the event.

So the structure of the event list can not only reduce the
frequency of allocating memory, but also inherits the merit of
the traditional approach in memory usage.

IV. VISUALIZATION OF THE SIMULATOR

Visualization is also an important component of the simula-
tor, though it is not indispensable. The traditional way to im-
plement visualization is off-line replaying, like NS2/Nam,
which displays the flow of packets according to the trace file.
Because the replaying depends on the trace file dumped dur-
ing the simulation, the off-line approach is time consuming
and may influence the performance of the simulator in terms
of scalability. Other tools integrate the graphic user interface
with the simulation engine, which has bad effects on the scal-
ability of the simulator as well.

We propose an on-line approach to show the progress of
simulation by a separate process locally or remotely, based on
a Client/Server model. A server process, which can be viewed
as the graphic user interface (GUI) of the simulator, is firstly
launched in the local machine or a remote machine. If the user
requests to display the process of the packet flow or to visual-
ize the states of the nodes, he can tell the simulator to connect
the server before starting running by specifying the address
and port on which the server is listening. During simulation
running, the server process is responsible for receiving and
parsing the packets encapsulating the requests of visualization,
which are generated and sent by the client.

For example, when the simulator finishes initialization, all
the created nodes need to be displayed in the GUI. So the
simulator will send the packets formatting like Node sensor 0
100.0 200.0 to the server. The first word Node in the packet
tells the GUI to draw a node, and sensor indicates the type of
the node. Different types of nodes, such as sensors and sink,
may be illustrated by different shapes in the GUI. The number
following the type of the node is its identity. When the server
receives the packet, it will draw a circle or a rectangle in the
coordinate of (100.0, 200.0) to represent the node. Other
packet formats are also defined to visualize other objects in
the simulator, such as radio propagation, link establishment
and packet flowing.

In such way, the visualization of the simulator can be im-
plemented without making significant modification to the
established simulation engine. Since the GUI server can be
run in a remote machine and the simulator can communicate
with it in asynchronous way, the visualization will not reduce
the performance of the simulator a lot.

V. PERFORMANCE EVALUATION

The performance of the proposed simulator has been evalu-
ated in terms of following metrics.

1. Real running time: real running time is the direct indi-
cator of scalability. It is obvious that the real running
time can be influenced by the number of nodes and the
simulation time. So we will firstly examine the trend of
change on real running time as the number of nodes in-

creases, and then influence of the configured simulation
time on the real running time will be examined.

2. Memory usage: total memory required to run simulation
can also influence the scalability of the simulator, since
more memory usage means more frequent operations on
the system resource, which is very time consuming.

Performances of the EasiSim are compared with that of
NS2 in terms of the above described metrics.

A. Real running time versus number of nodes
The experiments were set up by putting 10 to 1000 nodes

uniformly in a 1000 by 1000 meter square field. The trans-
mission range of the node is 250 meters. The node in the left
bottom corner is chosen to collect data and send the readings
to the sink, which is in the right top corner of the field. The
sensor nodes were configured to send the readings every 1
minute, and the simulation time is one hour. The length of the
packet is 36 bytes, and the physical rate of the node is 19.2
kbps. All the nodes use the B-MAC (without sleeping) and
route the data by flooding. Simulations were run on a Pen-
tium-IV3.0 GHz processor with 1 Gbytes of RAM memory.
The GUI ran in a remote machine.

We compute the run time by recording the time when the

simulator finished initialization, and when the simulator ends.
All the results are the average of 5 repetitions to reduce ran-
dom fluctuation. As Fig. 5 shows, for both EasiSim and NS2,
the running times are below 5 second when less than 100
nodes are put in the field. As more nodes are added to the

Fig. 6 Real running time versus simulation time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10

Simulation Time (Hour)

R
un

 T
im

e
(S

ec
on

d)

NS2
EasiSim

Fig. 5 Real running time versus number of nodes

0

5

10

15

20

25

30

35

40

45

50

10 20 50 100 200 300 400 500 600 700 800 900 1000

Number of Nodes

R
un

 T
im

e
(S

ec
on

d)
NS2
EasiSim

scenario, the simulation times increase in higher linear rates.
This can be attributed to the event explosion when the nodes
become denser. However, the run time of EasiSim increases
much more slowly than that of NS2. This can be owed mainly
to the efficient approach to merge the concurrent events de-
scribed in session II.

B. Real running time versus simulation time
In this experiment, we put 10 nodes uniformly in a 1000 by

1000 meter square field, and run the simulation with the same
parameters as described in the former experiment for 1 hour
to 10 hours.

As illustrated by Fig.6, the running times on both EasiSim
and NS2 rise with the increase of simulation time, because
more events are generated to be processed. However, the run-
ning time of EasiSim is much less than that of NS2. Since the
profits gained from event mergence can be neglected here, we
can attribute the advantage of EasiSim to its structure based
modeling method. Because all the data representing the state
of each node is stored in a structured variable, rather than in
an object, they can be accessed directly by the processing
procedure without invoking other methods, the processing
time can be reduced by a lot.

C. Memory usage

The setting up of the experiments to evaluate the memory

usage of the simulator is the same as what described in the
part A of this section. Here, we record the volumes of mem-
ory space allocated for the nodes and the events in the simula-
tor. Fig.7 shows the results of the experiments. We can see
that EasiSim is always more memory efficient than NS2. The
main reason leading to the result can be concluded as follows.

In NS2, every component of the node is modeled by an ob-
ject, and the components then comprise the node. Each object
in NS has a shadow in memory, so NS2 need twice more
spaces than EasiSim to store the nodes in the network.

VI. CONCLUSIONS

This paper presented a new simulator called EasiSim, for
simulating sensor networks at large scales.

EasiSim is featured by the structure-based modeling
method and the hierarchical organization of the components.
As the fundamental components, the node structures are
firstly organized into a three-dimension sorted linked list.
Pointers to the head and the tail of each dimension of the 3D

list are then organized into the hyper-structure called topology,
through which all the nodes involved in the current event can
be operated directly. In such way, some concurrent events can
be merged and thereby the running time can be reduced by an
order of magnitude. The topology structure is then integrated
with other components of the simulator, such as the discrete
event queue and the simulation clock, into the top-level struc-
ture named scenario.

At last, we evaluate the scalability of our designed simula-
tor in terms of real running time and memory usage. The re-
sults show that it takes less time and less memory for EasiSim
than for NS2 to complete simulations with the same number
of nodes and configured simulation time.

In addition, we proposed a visualization scheme based on a
client-server mode, which enable the simulation and GUI
processes to run in a distributed way. Therefore, our proposed
visualization scheme is supposed not to decrease the perform-
ance of the simulator in term of scalability.

VII. FUTURE WORKS

So far, we have established a scalable simulation platform
for sensor networks. To evaluate the performance of the simu-
lator, we also implemented the disk radio propagation module,
the B-MAC protocol and the flooding protocol in the simula-
tor.

As for our future works, we plan to extend the modules, in-
cluding the radio channel modules, the environment modules
and the networking protocol modules, to make the simulator
support for modeling the sensor networks more precisely. A
practical battery and energy module is also supposed to be
implemented in the future days, since it is of vital importance
for modeling the power efficiencies of different protocols and
life time of the sensor nodes.

As more modules added to EasiSim, the scalability of the
simulator will be reevaluated and its performance will be im-
proved step by step. Besides that, the visualization scheme
will be refined and its effects on the scalability of the simula-
tor will be investigated more deeply.

REFERENCES

[1] The Network Simulator–NS-2. http://www.isi.edu/nsnam/ns.
[2] F. Desbrandes, S. Bertolotti, and L. Dunand. “OPNET 2.4: An

environment for communication network modeling and simula-
tion,” In Proceedings of the European Simulation Symposium,
pp. 609–614, Delft, Nertherlands, Oct. 1993.

[3] A. Varga. “The OMNeT++ Discrete Event Simulation System,”
In Proceedings of the European Simulation Multiconference
(ESM’01), Prague, Czech Republic, Jun. 2001.

[4] H. Tyan. “Design, Realization and Evaluation of A Component-
based Compositional Software Architecture for Network Simu-
lation,” PhD thesis, Ohio State University, 2002.

[5] S. Park, A. Savvides, and M. B. Srivastava. “SensorSim: A
Simulation Framework for Sensor Networks,” In Proceedings of
MSWiM’00, pp. 104–111, Boston, Massachusetts, USA, 2000.

[6] P. Levis, N. Lee, M. Welsh, and D.Culler, “TOSSIM: Accurate
and Scalable Simulation of Entire TinyOS Applications,” In
Proceedings of SenSys’03, pp. 126–137, 2003.

[7] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J.S. Baras.
“ATEMU: A Fine-Grained Sensor Network Simulator,” In Pro-
ceedings of SECON’04, pp. 145–152, October 2004.

Fig.7 Memory usage versus number of nodes

0

2

4

6

8

10

12

14

10 20 50 100 200 300 400 500 600 700 800 900 1000

Number of Nodes

M
em

or
y

U
sa

ge
 (M

B
)

NS2
EasiSim

