
Existing Flatforms to Evaluate the Performance of Wireless

Sensor Networks

Chen Haiming
Wireless Sensor Network Lab., ICT, CAS

chenhaiming@ict.ac.cn

Contents

1 Introduction 3

2 General Network Simulators 3
2.1 NS-2 . 3
2.2 OPNET . 4
2.3 OMNeT++ . 5
2.4 JavaSim/J-Sim . 5
2.5 COST . 6
2.6 Ptolomy II . 6
2.7 NCTUns . 6
2.8 JiST/SWANS . 7
2.9 Summary . 7

3 Parallel and Distributed Simulation Platforms 7
3.1 GloMoSim/Qualnet . 7
3.2 SSFNet/DaSSF . 8
3.3 GTNetS . 8
3.4 Summary . 8

4 Sensor Network Simulators 9
4.1 Prolwer . 9
4.2 SENS . 9
4.3 Sidh . 9
4.4 Shawn . 10
4.5 H-MAS . 10
4.6 GloNeMo . 10
4.7 Summary . 10

5 Emulators 10
5.1 TOSSIM . 10
5.2 COOJA . 11
5.3 ATEMU . 11
5.4 Avrora . 11
5.5 Emstar . 12

1

6 Distributed Emulators 12
6.1 VMNet . 12
6.2 DiSenS . 12
6.3 Summary . 12

7 Testbeds 13
7.1 GNOMES . 13
7.2 MoteLab . 13
7.3 EmuLab . 13
7.4 Kansei . 13
7.5 MiNT-m . 13

8 Conclusion 14

9 Discussion and Future Work 14

List of Tables

1 Milestones of the NS development . 4
2 General Network Simulators and Their Extensions for Sensor Networks 7
3 Parallel/Distributed Simulators and Their Extensions for Sensor Networks . . . 9
4 Sensor Network Simulators Developed by Universities 11
5 Sensor Emulators Developed by Universities . 12

2

1 Introduction

With the fast development of embedded and networking technology, sensor networks become
one of the hottest research topics in the world. At present, many funds are founded to support
doing research on this advancing field. Many prototypes have been produced, as well as lots of
simulation platforms have been developed. The increasing efforts put on this field has further
accelerate the development of sensor networks, but a problem has also been rising.

The author of [1] named the problem as ”fragment”, which means so many diverse pro-
totypes and simulation tools developed by different institutions without compatibility. This
problem has led to the difficulty of transplanting protocol modules and applications from one
prototype to another, or from one simulation platform to another. In addition, this problem
has resulted in the incomparability of the experimental results or simulation results.

We plan to establish a common simulation platform for evaluating the performance of
sensor networks. Before diving into the project, we take a deep investigation on the currently
existing tools and platforms. Based on the work done by the author of [2], we include more
representative and latest developed tools into the report, and collect the developed testbeds
for evaluating the performance of sensor network as well.

The rest of the report is organized as follows. The four most popular general network
simulators, which are NS-2, OPNET, and OMNeT++, are introduced in Section 2. Section
4 presents several recently developed simulation tools especially for sensor networks. Some of
them are based on the general network simulators introduced in Section 2, while the others
are developed from the bottom. Next, four representative emulators for sensor networks are
showed in Section 5. Additionally, we shows the three experimental sensor network testbeds
developed by different universities in Section 7. A brief conclusion is made in Section 8. At
last, we depict the future work to be done in Section 9.

2 General Network Simulators

2.1 NS-2

Evolving from the REAL (REalistic And Large) network simulator, which was developed by
Keshav [3] in 1988 based on a modified version of the NEST (NEtwork Simulation Testbed) [4],
the NS (Network Simulator) has been developed for almost 20 years.

NS is an object-oriented discrete event simulator.The original prototype (version 1.0a) [5]
of NS was developed by the Network Research Group at the LBNL(Lawrence Berkeley Na-
tional Laboratory) in 1995, mainly supporting for evaluating the performances of Transport
Control Protocols and routing algorithms. It exploited C++ to implement the core set of
high-performance simulation primitives and the Tcl [6] scripting language to express the def-
inition, configuration, and control of the simulation. This C++/Tcl architecture makes the
simulator easy to extend.

In 1996 NS development was supported by DARPA through the VINT (Virtual InterNet-
work Testbed) [7] project at LBNL, Xerox PARC (Palo Alto Research Center), UCB, and
USC/ISI, which made the NS as a common simulation tool with features of abstraction and
extensibility for network researchers to use in the design and deployment of new wide-area
Internet protocols [8]. Since the VINT project made some fundamental changes in software
architecture and defined the split-programming model based on OTcl (MIT’s Object Tcl) [9],
the network simulator was named NS-2. The VINT project also extended the NS simulator
in the aspects of emulation [10] and visualization [11].

3

In 1997, the CMU Monarch (MObile Networking ARCHitectures) project (now in Rice
Unversity) [12] extended the NS-2 to support for the simulation of wireless networks, which
makes the NS-2 a simulation tool not only for wired networks but also for wireless and ad hoc
networks. The milestones of the NS development is listed in the table 1.

Now NS-2 is maintained by the public as a project of open-source, and is accepted as one
of the most popular simulation tools in the world. However, NS-2 has some drawbacks in
scalability, customization and lack of an application model.

Table 1: Milestones of the NS development
Version Events Release Date

NS 1.0a1 The first release July 31, 1995
NS 2.0a1 Major architecture changes (based on OTcl) November 6, 1996
NS 2.1b1 Incorporate tracing features for nam-1.0a2 November 11, 1997
NS 2.1b5 Incorporate the CMU wireless extension March 16, 1999

With the occurrence of wireless sensor networks, some researchers tried to extend the NS-2
to meet the requirements of modeling the sensor networks. SensorSim [13] extends NS-2 in
following three ways.

1. A power model, which takes into account each of the hardware components that would
need battery power in order to operate.

2. A sensor channel, which includes sensing through both a geophone and a microphone.

3. An interaction mechanism with external applications, which allows for real
sensed events to trigger reactions within the simulated environment.

Besides these improvements, SensorSim is featured by the SensorWare,which allows for dy-
namically managing nodes and provides a mechanism for distributed computation.

Taking into consideration the problem of scalability inherited from NS-2, the author of
SensorSim did some updates in [14]. However, SensorSim has not yet addressed the problem
of scalability very well. So this project has been stopped.

Another similar extension has been developed by the Naval Research Laboratory [15]
to simulate the limited hardware and power of the sensor networks, and allow for external
phenomena to trigger events as well.

2.2 OPNET

The OPNET network simulator [16] originated from early work on network modeling at MIT
in the 1980s, and now is a commercial product of MIL3 company [17]. OPNET is another
discrete event, object-oriented, general purpose network simulator. Models in the OPNET are
organized in a hierarchical mode, which consists of network model, node model, and process
model. These models are responsible for designing the network topology, defining the data
flow and handling the control flow. Besides these models, a parameter editors is included.

OPNET has some strengths in customization, like modeling different sensor-specific hard-
ware and defining custom packet format. However, it suffers from the same problem of scal-
ability as NS-2. Additionally, OPNET is only available in commercial form, so the module
extension in OPNET is not as prompt as NS-2.

4

2.3 OMNeT++

OMNeT++ [18] is a discrete event, component-based, general-purpose simulation environment
written in C++, with strong GUI support and an embeddable simulation kernel.

The OMNeT++ is composed of modules, which are connected by messages to implement
the simulator. The modules are organized in a hierarchical nested fashion, that is simple
modules in the bottom, compound modules composed of simple modules, and system modules
encompassing the compound modules. The system modules is referred to as the networks.
The compound modules can be viewed as the hosts or nodes in the networks. The simple
modules can be seen as the processing algorithms running on the host or node.

OMNeT++ exploits the C++ to implement the simple modules, and NED (NEtwork De-
scription language) to describe the network topology. This two-language software architecture
is similar with NS’s split-programming model. But the C++/NED architecture is more flexible
than the C++/OTcl architecture, due to the difference between the NED and the OTcl. The
NED is a description language that can can be edited by graphical interface and exported into
or imported from XML, while the OTcl is a scripting language that can only be interpreted
by its shell.

In short, OMNeT++ is featured by its generic and flexible architecture. At present, it is
an active public source software [19].

Based on the same architecture as SensorSim described in section 2.1, Mallanda [20] from
Louisiana State University extended the OMNeT++ to support the simulation of sensor net-
works, which is named SensorSimulator. In accordance with the architecture of OMNeT++,
echo node in the sensorSimulator is defined as a compound module, which includes proto-
col modules, hardware modules and coordinator modules. Besides that, it extended
modules to represent target objects, sensor channels and wireless channels.

2.4 JavaSim/J-Sim

J-Sim, formerly named as JavaSim [21] is a component-based, real-time process driven simu-
lator. It is based on the ACA (Autonomous Component Architecture) software architecture
and a generalized packet-switched INET (internetworking) framework. Each element in the
system is modeled as a component, which are assembled together at the system integration
time by matching the port contracts of the participating components. Like OMNeT++, the
INET framework organizes the components in a hierarchal manner, e.g., network, node, link
and protocol instance.

Each node in the JavaSim is composed of a CSL (Core Server Layer) and several protocol
modules. The CSL and protocol modules in the node are connected in a server-and-client
mode. To extend the protocol, it is required to define the service provided by the CSL in
terms of contracts, which are categorized into six categories: data, identity, routing table,
interface/neighboring, multicast and packet filter configuration.

The architecture is somewhat like NS-2 and OMNeT++ in that they are all use two
different languages to implement the protocol models and glue them together respectively.
These two languages used by J-Sim are Java and Jacl.

J-Sim is a free software now, and updated by public these years. Current version of J-Sim
includes some extended component to simulate the sensor networks [22]. The three major
components integrated in J-Sim for simulating the sensor networks are the target node, the
sensor node and the sink node, which are similar with the SensorSim extension to NS-2.

In view of the component-based architecture instead of object-oriented, J-Sim scales better
than NS-2. But J-Sim inherits the assumed problem of inefficiencies from JAVA.

5

2.5 COST

COST (Component-Oriented Simulation Toolkit) [23] is a general purpose discrete event
driven simulator. It is based on the component-port model. Components are connected by the
input ports and output ports. The COST is implemented by developed in CompC++, which
is a component extension to C++ by defining following template classes:

1. Funtor: generalization of the function pointer.

2. Inport and Outport: interfaces to connect the components. The inports prescribe
what functionalities a component can provide. The outports prescribe what functional-
ities may require from other components.

3. Simulation Time: time stamp of messages.

4. Port Index: extra argument to access the array of ports.

5. Timer: binding the time stamp argument and the index argument.

Since the COST only takes extensibility and reusability into considerations. scalability is
still a problem for COST. In addition, inefficiency coming from the message exchange between
components makes the problem more severe.

Based on the COST, a simulator called SENSE [24] is developed for simulating the sensor
networks. Each node component in the SENSE is made up of layered protocols, bat-
tery and power components, sensor component, mobility component, and wireless
channel component. It inherits the merits of extensibility from the COST by using the
component-port model. Besides that, it uses packet sharing model to partially solve the prob-
lem of scalability.

In addition, SENSE exploits simulation component classification to make not only the
simulation models extensible, but also the simulation engines. The extensibility of simulation
engines is embodied by the provision for the option to use parallel or sequential discrete event
engines.

2.6 Ptolomy II

The Ptolemy project Ptolomy [25] studies modeling, simulation, and design of concurrent, real-
time, embedded systems. The focus is on assembly of concurrent components. In an approach
of actor-oriented, hierarchical, heterogeneous modeling, each Module of Computation(MoC)
is implemented as a domain.

PtolomyII [26] is a software framework developed as part of the Ptolemy Project. It is
a Java-based component assembly framework with a graphical user interface called Vergil.
Vergil itself is a component assembly defined in Ptolemy II. Vergil stores models in ASCII files
using an XML schema called MoML (Modeling Markup Language).

VisualSense [27] is a part of Ptolomy II to simulate sensor networks. Viptos [28] is an
interface between Ptolomy II and TinyOS.

2.7 NCTUns

NCTUns [29]is a high-fidelity and extensible network simulator capable of simulating both
wired and wireless IP networks. It uses the real-life UNIX TCP/IP protocol stack, real-life
network application programs, and real-life network utility programs to run simulations.

6

2.8 JiST/SWANS

JiST(Java in Simulation Time) [30] is a high-performance discrete event simulation engine
that runs over a standard Java virtual machine. SWANS (Scalable Wireless Ad hoc Network
Simulator) is a scalable wireless network simulator built atop the JiST platform.

Because JiST embeds simulation semantics directly into the Java execution model, it can
execute the discrete event simulations both efficiently and transparently. In this approach,
JiST out-performs the traditional system-based and language-based simulators in terms of
time and memory consumption.

2.9 Summary

Table 2 gives a brief overview on the existing network simulators, and extensions to these
simulators for supporting modeling the sensor networks. We see that most of these simulators
have been extended, except the OPNET, NCTUns and JiST.

Table 2: General Network Simulators and Their Extensions for Sensor Networks
Simulator Architecture Language Extension Contributor

NS-2 Object-oriented C++/OTcl SensorSim UCLA
OPNET Object-oriented C++ N/A MIL3
OMNeT++ Component-based C++/NED SensorSimulator LSU
J-Sim Component-based Java/Jacl J-Sim OSU/UIUC
COST Component-based CompC++ SENSE RPI
Ptolemy II Actor-oriented Java/XML VisualSense UCB
NCTUns Unix Kernel-based C N/A NCTU.TW
JiST/SWANS JVM-based Java N/A Cornell

3 Parallel and Distributed Simulation Platforms

3.1 GloMoSim/Qualnet

GloMoSim (Global Mobile System Simulator) [31] is a library-based sequential and parallel
simulator for wireless networks. The library is written in PARSEC (PARallel Simulation
Environment for Complex system) [32], which is an extension of C for parallel programming.
Each node in the GloMoSim is modeled as a stack of protocols, which is radio/physical layer,
MAC layer, IP/Routing layer, transport layer and application layer, from bottom to top in
sequence. Propagation model and mobility model are also provided in the GloMoSim. It uses
an object-oriented approach to organize all the models.

To address the problem of scalability, it partitions the nodes. Each object is responsible
for running one layer in the protocol stack of every node for its given partition. However,
GloMoSim cannot simulate the non-IP network, like sensor network effectively. It does not
support the phenomenon occurring the outside of the simulation environment.

GloMoSim [33] began in 1998, but it stopped releasing updates in 2000. Instead, it is now
updated as a commercial product called Qualnet [34].

The SensorSim, which is mentioned in section 2.1 as an extension of NS-2 to support
modeling the sensor network, has been transplanted into the Qualnet. The extened Qualnet
was named sQualent [35]. Following two improvements have been made in sQualnet than
SensorSim.

7

1. Sensor physical layer: an accurate diffusive sensing channel is modeled by sovling the
parabolic partial differential equations (PDEs).

2. Battery model: the current draw from the battery is modeled as a piece-wise linear
current load profile.

3.2 SSFNet/DaSSF

Scalable Simulation Framework (SSF) [36] is developed as a common parallel simulation API
suitable for but not exclusively for simulation of very large telecommunication systems.

SSFNet [37] is a collection of Java SSF-based components for modeling and simulation
of Internet protocols and networks at and above the IP packet level of detail. Dartmouth
SSF (DaSSF) [38] is a C++ implementation of SSF. Both SSFNet and DaSSF use Domain
Modeling Language (DML) to describe network configuration.

SWAN(Simulation of Wireless and Ad-hoc Networks) [39] is an extension of DaSSF to
support simulating wireless sensor network. It is comprised of inter-operating sub-models for
terrain, plume dispersion, RF channel, and Node. Each node in SWAN consists of a wireless
sensor model, a BBN WiroKit router model and operating system model. The operating system
model is implemented with the DaSSF runtime kernel.

ToSSF [40] is an extension of SSFNet to support TinyOS native code.

3.3 GTNetS

The Georgia Tech Network Simulator (GTNetS) [41] is a C++ object-oriented simulator. It
is designed in efficiency to support simulation of very large scale networks by reducing event
list size, managing memory and reducing log file size [42].

GTNetS is designed specifically to allow creating distributed simulation platform easily.
Unlike SSFNet/DaSSF, which are parallel simulators created from scratch, the parallel version
of GTNeTs is created by interconnecting existing simulators based on a underlying runtime
infrastructure (RTI) [43], which is identical to the architecture of PDNS (Parallel/Distributed
Network Simulator) [44]. Each simulator is called a federate. To support distributed simu-
lation, it used rlinks, IP address, and address masks to identify link end points, and an IP
address and port number to identify a remote end host. GTNetS uses NIx-Vector routing to
economize on memory required to store routing table information.

GTSNetS [45] is an extension to the GTNetS for sensor networks. Each wireless sensor
node in GTSNets is composed of a computing unit, a sensing unit, a communication unit and
a battery. Additional function is added to the sink node, which is keeping track of the life
time of the sensor network. GTSNeTs also provides for extensive packet tracing. It features
by its scalability, and is able to simulate sensor networks of several hundred thousand nodes
while using less than 2 GB of memory. However, the modules in GTSNeTs is not so realistic,
e.g. the battery is modeled as a reservoir of joules.

3.4 Summary

Table 3 gives a brief overview on the existing parallel/distributed simulators, and extensions to
these simulators for supporting modeling the sensor networks. We see that all these simulators
have been extended.

8

Table 3: Parallel/Distributed Simulators and Their Extensions for Sensor Networks
Simulator Architecture Language Extension Contributor

GloMoSim/Qualnet Object-oriented C++ sQualnet UCLA
SSFNet/DaSSF Object-oriented C++/MDL SWAN Dartmouth
GTNetS Object-oriented C++ GTSNetS GeTech

4 Sensor Network Simulators

4.1 Prolwer

Prolwer [46] is a MatLab-based, event-driven simulator for tuning the parameters of middle-
ware (distributed system services) to provide an optimum for a given QoS metric.

4.2 SENS

SENS [47] is a component-based sensor network simulator. It is composed of following four
components.

1. Application component: support importing realistic softwares;

2. Network component: protocol layer;

3. Physical component: power and sensing hardware;

4. Environment component: physical phenomena and layout.

The former three components make up the node module.

4.3 Sidh

Sidh [48] is a specific-purpose, component-based simulator for wireless networks. It is made
up of a number of modules that interact with each other through events. The modules are
divided into following categories.

1. Simulator module: base of Sidh;

2. Event module: communication between the other modules;

3. Node module: collection of hardware, network protocols and applications;

4. Environment module: physical phenomena, like target objects in SenseSim;

5. Medium and propagation module: wireless channel and sensor channel.

Sidh has some merits in extensibility, but may not perform well in view of efficiency.
Modules provided by Sidh are very limited.

9

4.4 Shawn

Shawn [49] is a discrete event simulator for sensor networks with huge numbers of nodes. It
is aimed at supporting the development cycle of sensor network protocols. Three major parts
of Shawn are listed below.

1. Sequencer: the sequential simulation engine, which includes a simulation controller
and a event scheduler responsible for scheduling the simulation task.

2. Simulation environment: the simulation objects, which are world, nodes and pro-
cesses. These objects are organized in a hierarchical fashion, that is, the world contains
several nodes and each node contains processes to process messages.

3. Models: foundation of the simulator, which includes the communication model, edge
model and transmission model. The latter two models are based on the first model.
Optional communication models are unit disk graphs, based on radio propagation physics
and predefined connectivity.

Due to the simple models used by Shawn, it supports simulating large scale sensor networks
with shorter run time and less memory consumption than NS-2. However, current available
models for Shawn is very limited.

4.5 H-MAS

H-MAS [50] is a agent-based simulating environment using the swarm toolkit. It has only
implemented a flood-based communication scheme and a non-contending media access method.
Developped by University of Notre Dame. Another AI based simulation platform is presented
in [51].

4.6 GloNeMo

GloNeMo [52] employs an approach of formal modeling to establish global models for the
sensor networks. The models cover the hardware, protocol layers and application code for the
nodes, and the physical environment as well.

The model formalist is made of Communicating Input/Output Interpreted Automata. Mod-
els for the components of the nodes are described in a functional-style language named Reac-
tiveML, and the physical environmental model is implemented in a constraint-based language
named Lucky. These models can be executed by the formal validation tools. In this way, the
performance of the modeled sensor network can be evaluated.

4.7 Summary

Table 4 gives a brief overview on the existing simulators created specifically for sensor networks.

5 Emulators

5.1 TOSSIM

TOSSIM [53] is an emulator, which runs the actual TinyOS [54] applications built on MICA.
It is featured by scalability, completeness, fidelity and bridging.

10

Table 4: Sensor Network Simulators Developed by Universities
Simulator Architecture Language Contributor

Prolwer Matlab-based C/Java Vanderbilt
SENS Component-based C++ UIUC
Sidh Component-based Java UMD
Shawh Object-oriented C++ TUB.Germany
H-MAS Agent-based Java Univ. Notre Dame
GloNeMo Formalism ReactiveML FranceTeleCom

It employs the identical structure with TinyOS and is generated by compiling the whole
system into a discrete-event simulator. The TOSSIM architecture is mainly made up of
following different components.

1. Compiler support: translates the TinyOS component graphs into a directed graph of
bit error probability, and hardware interrupts into discrete events;

2. Execution model: discrete event queue;

3. Abstract hardware: ADC, clock and radio stack, etc.;

4. Communication services: commmand/event interface that allow PC applications to
communicate with TOSSIM over TCP/IP.

The probabilistic bit error model and translation of hardware interrupts into discrete events
may lead to accuracy loss. Additionally, the phenomena is not simulated in TOSSIM.

PowerTOSSIM [55] is an extension to TOSSIM for estimating per-node power consump-
tion.

5.2 COOJA

COOJA [56] is a novel simulator for the Contiki operating system [57] that enables cross-level
simulation: simultaneous simulation the network level, the operating system level, and the
machine code instruction set level.

5.3 ATEMU

ATEMU [58] offers a more fine-grained AVR CPU emulator model, which uses a cycle-by-cycle
strategy to run application code. So ATEMU is one of the most accurate sensor emulators
available, but it has the problem of scalability.

ATEMU uses an XML configuration file to define the entire network in a hierarchical
manner. It also provides a GUI interface, called XATDB, to debug the code.

5.4 Avrora

Avrora [59] is an emulator implemented in JAVA, and runs codes in an instruction-by-
instruction fashion like ATEMU. It wants to make a tradeoff between TOSSIM and ATEMU,
in other words, it want to gain the scalability of TOSSIM without reducing the accuracy of
ATEMU so much. To obtain this aim, it employs two methods to reduce synchronization after
every instruction.

11

5.5 Emstar

Emstar [60] is a Linux-based framework, which defines development cycle from pure simulation
to actual deployment. The EmStar simulation model is component based, and provides an
option to interact with actual hardware while running simulation.

Emstar uses a very simple environmental model and network media, but based on the
interacting interface provided, it can make use of the actual sensors and communication chan-
nel. So Emstar is really a half-simulator and a half-emulator. Besides that, Emstar
is featured by its support for developing software for Mica2 and iPAQ. Latest status of the
project is reported in [61].

6 Distributed Emulators

6.1 VMNet

VMNet [62] is a distributed sensor network emulator based on EMPOWER [63], aiming at
accurate emulation of a WSN for data-centric applications. Virtual motes(VM) running the
real software are distributed in a LAN. These VMs are emulated to be connected logically by
a virtual channel, and synchronized by a scheme of virtual time.

It is proved scalable and accurate, but it can only emulate one type of WSN now. Moreover,
it does not take power consumption and mobility into consideration.

6.2 DiSenS

DiSens [64] is a full-system simulator, implemented especially for running in the distributed-
memory parallel cluster systems. DiSens addressed the problem of extendibility, fidelity and
scalability in simulating the sensor networks, by adopting a cycle accurate device emulator
with pluggable models, a simple parallel synchronization protocol, and a sophisticated node
partitioning algorithm.

The principle of DiSens is similar with VMNet. Both two platforms use a cluster of PCs or
workstations to run the binary codes of the Motes, and communication among the Motes are
simulated by sending messages via the LAN connecting the PCs or workstations. But DiSenS
details more on how to solve the problem of synchronization and scalability.

6.3 Summary

Table 5 gives a brief overview on the existing emulators created specifically for sensor networks.

Table 5: Sensor Emulators Developed by Universities
Emulator OS Language Contributor

TOSSIM TinyOS nesC UCB
ATEMU Any AVR C UMD
Arvora TinyOS nesC UCLA
Emstar Linux/TinyOS nesC/C UCLA
VMNet TinyOS nesC UST.HK
DiSenS TinyOS nesC UCSB

12

7 Testbeds

7.1 GNOMES

GNOMES [65] is a testbed for wireless heterogeneous sensor networks, which are refered to the
networks composed of nodes sensing different things, developed by Rice University. Aiming
at the longevity of each node, it employs dual-battery approach mixed with solar cell in order
to recharge the battery when the node is in inactive. Besides that, the GNOMES node can
function with either a 2.4GHz Bluetooth radio or a 900MHz radio module. The node can
optionally integrate with a GPS module. As for the heart of the GNOMES node, it is a 16bit
MPS430 microcontroller.

7.2 MoteLab

MoteLab [66] is a web-based sensor network testbed developed by Harvard University. Tens
of Mica2 motes attached to MIB600 interface boards are connected by Ethernet to form a
testbed. Each node in the testbed can be reprogrammed from a web interface or directly and
the log data are permanently stored in a central database. So it allows the remote user to do
experiment online or offline. Additionally, the job scheduler ensures the fair access.

Mirage [67] is a microeconomic resource allocation system using a combinatiorial auction
for MoteLab, aimed to address the testbed resource allocation problem.

7.3 EmuLab

Mobile EmuLab [68] is a robot-based mobile sensor network testbed developed by University
of Utah. There are some resemblances between MoteLab and EmuLab, the main of which
is both these two testbeds are web-based and can be accessed directly and remotely. The
essential difference between them is that the former is for static sensor network, while the
latter is for the mobile one. Motes in the MotLab are connected with a central computer via
Ethernet, while Motes in the mobile EmuLab are mounted on the robots and communicate
with the central computer through WIFI.

The Mobile EmuLab is built upon the EmuLab, and adds two important models for locating
and moving the robots respectively.

7.4 Kansei

Kansei [69] is a heterogeneous sensor network testbed developed by the Ohio State University.
It consists of a stationary array, a portable array and a mobile array. Besides its ability to
provide a practical experimental environment, it supports hyberid simulation. When doing
experiments, the motes run the real programs while the sensing readings are generated by
sampling the recorded traces in the database. As for the hyberid simulation, it is accomodated
by adapting the sensing and communication parts of TOSSIM. Like EmuLab and MoteLab,
it also provides a web-based interface to configure and reconfigure the motes in the testbed.

7.5 MiNT-m

MiNT [70] is an autonomous mobile wireless experiment platform established in the Stony
Brook University.

13

8 Conclusion

Though the testbed can guarantee high fidelity of the experimental results, it requires lots
of time and energy to be putted. Especially when the time or finance is limited, it makes
sense to evaluate the performance of sensor networks by simulation or emulation. So it is
required to establish a extendable and scalable simulation/emulation flatform modeling the
sensor networks accurately.

In this paper, we gave a deep overview on the existing platforms to evaluate the perfor-
mance of sensor networks. Some of them are for general purpose, while others are special for
sensor networks. Concluding from the above descriptions of these platforms, either extension
to the general-purpose simulators or implementation of a new simulator from script, following
modules are supposed to be included in the simulators for sensor networks.

• Physical nodes: includes sensors, networking protocols and applications. The appli-
cations are mainly driven by the stimuli of the sensing readings.

• Power consumption: interacts with the hardware of the nodes in order to determine
the its power consumption in different states. The primary hardware that should be
taken into accounts are radio transceiver, CPU and sensor.

• Environment: simulates the target environment of sensors.

• Channels: includes wireless radio channel and sensing channel.

The complexity and architecture of these modules have deep effects on the performance
of the simulators. Author of [71] have pointed out the three main modules comprising the
simulators, namely radio channel, environment and energy consumption, and discussed their
effects on the scalability of the simulators.

In short, the survey gives us a good reference to develop a extendable, scalable and accurate
simulation platform for sensor networks.

9 Discussion and Future Work

We plan to develop a new platform for sensor networks in the near future. Before diving
into it, several decisions should be made. First, which is appropriate to serve your purpose?
Simulator or emulator? We think that the answer to this question is dependant on whether the
flatform is developed for evaluating the performance of the top level protocols or fine tuning
the low-level algorithms? Second, in which way to build a simulator? Build on top of an
existing general simulator or from the base to the top? We think that it is related to the time
available and specific feature required, such as scalability and execution speed. Third, how to
build? As for such a detailed question, following specific subquestions should be addressed.

• Architecture: component-base or object-oriented?

• Language: C++ or JAVA?

• Simulation engine: event driven or time driven?

• Execution model: sequential or parallel?

• Features to be included: modeling node and environment accurately, and provide
the ability to interact with real nodes?

14

No matter what decisions made, the foremost important model to be implemented for
simulating the sensor networks is the power consumption model, which is tightly associated
with the hardware model. As for the hardware to be taken into considerations, it mainly
includes microcontroller, radio module and sensor/actuator. When establishing the power
consumption model for these hardware components, following aspects should be taken into
accounts.

• Performance parameters of the radio module: What’s the mapping from radio
power to consumed power? Receiver sensitivity? Maximum output power? Mapping
from SINR to bit error rate? Available data rates? Number of available channels?

• Modes of operations: What is the power consumption for these components in dif-
ferent modes?

Besides the power consumption model, other necessary models must be established for
sensor networks, like models of environment, radio and sensing channel. The accuracy of
these modules also have deep influence on the results of performance evaluation. For mobile
sensor networks, a model of mobility is required.

In the near future, we will firstly implement the typical protocol models for sensor networks,
such as ZigBee(IEEE 802.15.4), B-MAC and Direct Diffusion, etc. Then we will implement the
environment model, sensing channel model and sensor-driven application model. Additionally,
the radio channel and mobility model will also be implemented if necessary.

15

References

[1] V. Handziski, A. Köpke, H. Karl, and A. Wolisz. A Common Wireless Sensor Network
architecture? Technical report, TKN-03-012 of the Telecommunications Networks Group,
Technische Universität Berlin, 2003.

[2] D. Curren. A Survey of Simulation in Sensor Networks. Technical report, University of
Binghamton.

[3] S. Keshav. REAL: A Network Simulator. Technical report, CSD-88-472, University of
California, Berkeley, 1988.

[4] D.F. Bacon, A. Dupuy, J. Schwartz, and Y. Yemini. NEST: A Network Simulation and
Prototyping Tool. In Proceedings of the USENIX Winter 1988 Technical Conference,
pages 71–78, 1988.

[5] ns version 1 – LBNL Network Simulator. http://www-nrg.ee.lbl.gov/ns/.

[6] J. Ousterhout. Tcl: An Embeddable Command Language. In Proceedings of the USENIX
Winter Conference, Jan. 1990.

[7] The Network Simulator–NS-2. http://www.isi.edu/nsnam/ns.

[8] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Handley, A. Helmy,
J. Heidemann, P. Huang, S. Kumar, S. McCanne, R. Rejaie, P. Sharma, K. Varadhan,
Y. Xu, H. Yu, and D. Zappala. Improving Simulation for Network Research. Technical
Report 99-702, University of Southern California, Los Angeles, Mar. 1999.

[9] D.d Wetherall and C.J. Lindblad. Extending Tcl for Dynamic Object-Oriented Pro-
gramming. In Proceedings of the 3rd conference on USENIX 3rd Annual Tcl/Tk Work-
shop(TCLTK’98), pages 19–27, Toronto, Canada, 1995.

[10] K. Fall. Network Emulation in the VINT/NS Simulator. In Proceedings. IEEE Inter-
national Symposium on Computers and Communications(ISCC’99), pages 244–250, Jul.
1999.

[11] D. Estrin, M. Handley, J. Heidemann, S. McCanne, Y. Xu, and H. Yu. Network Visual-
ization with the VINT Network Animator Nam. Technical Report 99-703, University of
Southern California, Los Angeles.

[12] The Monarch Project’s Wireless and Mobility Extensions to ns.
http://www.monarch.cs.rice.edu/cmu-ns.html.

[13] S. Park, A. Savvides, and M. B. Srivastava. SensorSim: A Simulation Framework for
Sensor Networks. In Proceedings of The 3rd ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems(MSWiM’00), pages 104–111,
Boston, Massachusetts, USA, 2000.

[14] S. Park, A. Savvides, and M. B. Srivastava. Simulating Networks of Wireless Sensors.
In Proceedings of the 33th Conference on Winter Simulation(WSC’01), pages 1330–1338,
2001.

[15] I. Downard. Simulating Sensor Network in NS-2. Technical report, Naval Research
Laboratory, April 2004.

16

[16] F. Desbrandes, S. Bertolotti, and L. Dunand. OPNET 2.4: An environment for commu-
nication network modeling and simulation. In Proceedings of the European Simulation
Symposium, pages 609–614, Delft, Nertherlands, Oct. 1993.

[17] OPNET Technologies. http://www.opnet.com.

[18] András Varga. The OMNeT++ Discrete Event Simulation System. In Proceedings of the
European Simulation Multiconference(ESM’01), Prague, Czech Republic, Jun. 2001.

[19] Omnet++. http://www.omnetpp.org/.

[20] C. D. Mallanda. SensorSimulator: Simulation Framework for Sensor Networks. Master’s
thesis, Louisiana State University, May 2005.

[21] H. Tyan. Design, Realization and Evaluation of A Component-based Compositional Soft-
ware Architecture for Network Simulation. PhD thesis, Ohio State University, 2002.

[22] A. Sobeih, W.P. Chen, J. C. Hou, L.C. Kung, N. Li, H. Lim, H.Y Tyan, and H. Zhang.
J-Sim: A Simulation and Emulation Environment for Wireless Sensor Networks. Pro-
ceedings of the 38th Annual Simulation Symposium(ANSS’05), pages 175–187, 2005.

[23] G. Chen and B. Szymanski. COST: A Component-Oriented Discrete Event Simulator.
In Proceedings of the 34th Conference on Winter Simulation(WSC’02), pages 776–782,
2002.

[24] G. Chen, J. Branch, M. J. Pflug, L. Zhu, and B. Szymanski. Advances in Pervasive
Computing and Networking, chapter SENSE: A Sensor Network Simulator, pages 249–
267. Springer, 2004.

[25] J. Eker, Jörn W. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
and Y. Xiong. Taming Heterogeneity—the Ptolemy Approach. Proceedings of the IEEE,
91(1):127–144, Jan. 2003.

[26] Ptolemy II. http://ptolemy.eecs.berkeley.edu/ptolemyII/.

[27] P. Baldwin, S. Kohli, E.A. Lee, X. Liu, and Y. Zhao. Modeling of Sensor Nets in Ptolemy
II. In Proceedings of the 3rd international symposium on Information processing in sensor
networks(IPSN’04), pages 359–368, Berkeley, California, USA, 2004.

[28] E. Cheong, E. A. Lee, and Y. Zhao. Viptos: A Graphical Development and Simulation
Environment for TinyOS-based Wireless Sensor Networks. In Proceedings of the 3rd
international conference on Embedded networked sensor systems(SenSys’05), pages 302–
302, San Diego, California, USA, 2005.

[29] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou, and C.C.
Lin. The Design and Implementation of the NCTUns 1.0 Network Simulator. Computer
Networks, 42(2):175–197, Jun. 2003.

[30] R. Barr, Z.J. Haas, and R.V. Renesse. JiST: An efficient approach to simulation using
virtual machines. Software Practice & Experience, 35(6):539–576, May 2005.

[31] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: A Library for Parallel Simulation of
Large–Scale Wireless Networks. In Proceedings of Workshop on Parallel and Distributed
Simulation, pages 154–161, 1998.

17

[32] R. Bagrodia, R. Meyer, M. Takai, Y.A Chen, X. Zeng, J. Martin, and H.Y. Song. PAR-
SEC: A Parallel Simulation Environment for Complex System. IEEE Computer Magazine,
31(10):77–85, Oct. 1998.

[33] GloMoSim 2.0. http://pcl.cs.ucla.edu/projects/glomosim/.

[34] Scalable Network Technologies. http://www.scalable-networks.com.

[35] J. Xiong and P. Aghera. SQualNet–A Simulation Framework for Sensor Network. Tech-
nical report, UCLA, 2003.

[36] Scalable Simulation Framework(SSF). http://www.ssfnet.org.

[37] J.H. Cowie, H. Liu, J. Liu, D.M. Nicol, and A.T. Ogielski. Towards Realistic Million-Node
Internet Simulations. In Proceedings of the 1999 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’99), Las Vegas, Nevada,
1999.

[38] J.H. Cowie, D.M. Nicol, and A.T. Ogielski. Modeling the Global Internet. Computing in
Science & Engineering, 1(1):42–50, Jan/Feb 1999.

[39] J. Liu, L.F. Perrone, D.M. Nicol, M. Liljenstam, C. Elliott, and D. Pearson. Simulation
Modeling of Large-Scale Ad-hoc Sensor Networks. In Proceedings of European Simulation
Interoperability Workshop (Euro-SIW’01), 2001.

[40] L. F. Perrone and D. M. Nicol. Network Modeling and Simulation: A Scalable Simulator
for TinyOS Applications. In Proceedings of the 34th Conference on Winter Simulation
(WSC’02), pages 679–687, 2002.

[41] G. F. Riley. Large-scale Network Simulations with GTNetS. In Proceedings of the 35th
Conference on Winter Simulation(WSC’03), pages 676–684, New Orleans, Louisiana,
2003.

[42] G. F. Riley. The Georgia Tech Network Simulator. In Proceedings of the ACM SIGCOMM
workshop on Models, methods and tools for reproducible network research(MoMeTools’03),
pages 5–12, Karlsruhe, Germany, 2003.

[43] R.M. Fujimoto, K. Perumalla, A. Park, H. Wu, M.H. Ammar, and G.F. Riley. Large-
scale Network Simulation: How big? How fast? In Proceedings of the 11th IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of Computer Telecom-
munications Systems(MASCOTS’03), pages 116–123, Oct. 2003.

[44] G.F. Riley, R.M. Fujimoto, and M.H. Ammar. A Generic Framework for Parallelization
of Network Simulations. In Proceedings of the 7th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems(MASCOTS’99),
pages 128–135, College Park, MD, USA, Oct. 1999.

[45] E. Ould-Ahmed-Vall, G.F. Riley, B.S. Heck, and D. Reddy. Simulation of Large-scale
Sensor Networks using GTSNetS. In Proceedings of the 13th IEEE International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems(MASCOTS’05), pages 211–218, Sept. 2005.

18

[46] G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi. Simulation-based Optimization of
Communication Protocols for Large-scale Wireless Sensor Networks. In Proceedings of
the IEEE Aerospace Conference, volume 3, pages 1339–1346, March 2003.

[47] S. Sundresh, W. Kim, and G. Agha. SENS: A Sensor, Environment and Network Sim-
ulator. In Proceedings of The 37th Annual Simulation Symposium (ANSS’04), pages
221–228, Arlington, VA, April 2004.

[48] T.W. Carley. Sidh: A wireless Sensor Network Simulator. Technical report, University
of Maryland at College Park, 2004.

[49] A. Kröller, D. Pfisterer, C. Buschmann, S. P. Fekete, and S. Fischer. Shawn: A New
Approach to Simulating Wireless Sensor Networks. In Proceedings of Design, Analysis,
and Simulation of Distributed Systems 2005(Part of the SpringSim 2005), April 2005.

[50] B.C. Mochocki and G.R. Madey. H-MAS: A Heterogeneous, Mobile, Ad-hoc Sen-
sor Network Simulation Environment. In Proceedings of the 7th Annual Swarm User-
s/Researchers Conference(Swarm’03), Notre Dame, Indiana, April 2003.

[51] R. O. Cunha, A. P. Silva, A. F. Loureiro, and L. B. Ruiz. Simulating Large Wireless
Sensor Networks Using Cellular Automata. In Proceedings of the 38th annual Symposium
on Simulation(ANSS’05), pages 323–330, 2005.

[52] L. Samper, F. Maraninchi, L. Mounier, and L. Mandel. GLONEMO: Global and Ac-
curate Formal Models for The Analysis of Ad-hoc Sensor Networks. In Proceedings of
The 1st International Conference on Integrated Internet Ad hoc and Sensor Network-
s(InterSense’06), pages 3–9, Nice, France, 2006.

[53] P. Levis, N. Lee, M. Welsh, and D.Culler. TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications. In Proceedings the 1st ACM Conference on Embedded Net-
worked Sensor Systems(SenSys’03), pages 126–137, Los Angeles, California, November
2003.

[54] A. Woo S. Hollar D. Culler J. Hill, R. Szewczyk and K. Pister. System Architecture
Directions for Networked Sensors. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’00),
pages 93–104, Nov. 2000.

[55] V. Shnayder, M. Hempstead, B. Chen, G. Werner A., and M. Welsh. Simulating the
Power Consumption of Large-scale Sensor Network Applications. In Proceedings of the
2nd international conference on Embedded networked sensor systems (SenSys’04), pages
188–200, Baltimore, MD, USA, 2004.

[56] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-Level Sensor Network
Simulation with COOJA. In Proceedings 2006 31st IEEE Conference on Local Computer
Networks (LCN’06), pages 641–648, Nov. 2006.

[57] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - A Lightweight and Flexible Operat-
ing System for Tiny Networked Sensors. In Proceedings of the 1st IEEE Workshop on
Embedded Networked Sensors (EmNets-I), Tampa, Florida, USA, Nov. 2004.

19

[58] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J.S. Baras. ATEMU: A Fine-Grained
Sensor Network Simulator. In Proceedings of the 1st IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks(SECON’04), pages
145–152, October 2004.

[59] B.L. Titzer, D.K. Lee, and J. Palsberg. Avrora: Scalable Sensor Network Simulation
With Precise Timing. In Proceedings of the 4th International Conference on Information
Processing in Sensor Networks(IPSN’05), pages 477–482, Los Angeles, California, 2005.

[60] J. Elson, L. Girod, and D. Estrin. EmStar: Development with High System visibility.
IEEE Wireless Communication, pages 70–77, December 2004.

[61] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil, and
T. Schoellhammer. A System for Simulation, Emulation, and Deployment of Hetero-
geneous Sensor Nnetworks. In Proceedings the 2nd ACM Conference on Embedded Net-
worked Sensor Systems(SenSys’04), pages 201–213, Baltimore, Maryland, USA, Novem-
ber 2004.

[62] H. Wu, Q. Luo, P. Zheng, B. He, and L.M. Ni. Accurate Emulator of Wireless Sensor
Networks. In Proceedings of the IFIP NPC’04 Workshop on Building Intelligent Sensor
Networks(BISON’04), pages 576–583, Wuhan, China, October 2004.

[63] P. Zheng and L.M. Ni. EMPOWER: A Network Emulator for Wireline and Wireless
Networks. In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer
and Communications Societies(INFOCOM’03), volume 3, pages 1933–1942, Mar. 2003.

[64] R. Wolski Y. Wen and G. Moore. DiSenS: Scalable Distributed sensor Network Simula-
tion. Technical report, Department of Computer Science, University of California, Santa
Barbara, 2005.

[65] E. Welsh, W. Fish, and J.P. Frantz. Gnomes: A Testbed for Low Power Heterogeneous
Wireless Sensor Networks. In Proceedings of the 2003 International Symposium on Cir-
cuits and Systems(ISCAS’03), volume 4, pages 836–839, 2003.

[66] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: A Wireless Sensor Network
Testbed. In Proceedings of the 4th International Conference on Information Processing
in Sensor Networks(IPSN’05), pages 483–488, Los Angeles, California, 2005.

[67] B.N. Chun, P. Buonadonna, A. AuYoung, Chaki Ng, D.C. Parkes, J. Shneidman, A.C.
Snoeren, and A. Vahdat. Mirage: A microeconomic resource allocation system for sen-
sornet testbeds. In Proceedings of the 2nd IEEE Workshop on Embedded Networked
Sensors(EmNetS-II), pages 19–28, May 2005.

[68] D. Johnson, T. Stack, R. Fish, D. Flickinger, L. Stoller, R. Ricci, and J. Lepreau. Mobile
Emulab: A Robotic Wireless and Sensor Network Testbed. In Proceedings of the 25th
IEEE Conference on Computer Communications (INFOCOM’06), April 2006.

[69] E. Ertin, A. Arora, R. Ramnath, M. Nesterenko, V. Naik, S. Bapat, V. Kulathumani,
M. Sridharan, H. Zhang, and H. Cao. Kansei: A Testbed for Sensing at Scale. In
Proceedings of The 5th International Conference on Information Processing in Sensor
Networks(IPSN’06), pages 339–406, Nashville, Tennessee, USA, April 2006.

20

[70] P. De, A. Raniwala, R. Krishnan, K. Tatavarthi, J. Modi, N. A. Syed, S. Sharma, and
T. Chiueh. MiNTm: An Autonomous Mobile Wireless Experimentation Platform. In
Proceedings of the 4th international conference on Mobile systems, applications and ser-
vices(MobiSys’06), pages 124–137, 2006.

[71] E.L. Esteban, V.A. Javier, M.S. Alejandro, P.M. Pablo, and G.H. Joan. Simulation
Scalability Issues in Wireless Ssensor Networks. IEEE Communications Magazine, pages
64–73, July 2006.

21

