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Abstract—Based on the Service Oriented Architecture (SOA),
Internet of Things (IoT) systems are usually developed by
orchestrating application services and entity services, which are
required to be easily adapted to meet varying requirements of
sensing or controlling the physical space. To ease updating and
modification of entity services, some software-defined network
approaches have been applied in building IoT systems. However,
in these software-defined IoT systems, entity services are usually
developed with the same software architecture as traditional
services in Internet, which are not so easy to be adapted. In
order to solve the problem, we propose a Physical Model Driven
software Architecture (PMDA) for guiding the design of entity
services. Furthermore, to reduce the maintenance cost of the
entity services when adapting them to different requirements
generated from both the social and the physical space, we
propose an evolution Mechanism of Entity Services (eMES). The
correctness and effectiveness of eMES are verified by a case study
and analysis respectively.

Index Terms—Internet of Things, software defined, entity
service, evolution mechanism.

I. INTRODUCTION

With the rapid development of smart sensing, wireless
networking, and embedded computing, more and more digital
devices deployed in the physical world can be interconnected
and interoperate to compose the cyber-physical-human Internet
of Things (IoT) environment [1]. The goal of IoT is to connect
any people and any things, in any places, at any time, in the
form of services [2], which can be mainly categorized into
two types, namely application services and entity services. The
application services are those used for processing data, while
the entity services are those for abstracting functionalities
of sensing devices or smart gateways. As shown in Fig. 1,
application services are usually built at the cloud side [3],
while entity services can be built at both the cloud and the
device side (a.k.a. edge services [4]). These services are seen
as ubiquitous ingredients to construct IoT systems supporting
a huge number of application scenarios. According to the
ternary theory [5], entity services—differently than traditional
application services in the Internet—peculiarly consists of
parts in three spaces, namely social, cyber, and physical space.
In particular, entity services in the cyber space interact with
people in the social space, who send requirements to devices in
the physical space. Requirements from people usually consist
in sensing data from the physical space and generating control
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Fig. 1. Service Oriented IoT based on Software-Defined Network Architec-
ture.

information to change the status of devices in the physical
space [6].

Because requirements for sensing and controlling the phys-
ical space can be varied from person to person and over time,
the physical part of entity service can be changed frequently.
To ease updating of entity services, a software-defined network
architecture has been applied in building IoT system, which
are called Software-defined IoT [7], [8]. In particular, there
is a central point (i.e. the software-defined IoT controller)
serving as the control plane of the IoT system, and the entity
services at both the device and cloud sides are treated as the
data plane to be developed and maintained. Currently, there
has been some work done on the design of the control plane
of the service-oriented software-defined IoT [9], [10]. How-
ever, the data plane of the service-oriented software-defined
IoT [11] has hardly been changed from distributed objects
(e.g. Physicalnet [12]), mobile agents (e.g. ASO [13]), or
web services (e.g. SODA [14] and TinyREST [15]). Because
they all encapsulate device- and scenario-specific functional-
ities into logic components in the same manner as business
process modules, it is difficult to adapt them to the dynamic
requirements from the social space and changing parameters
of sensing or controlling the physical space.

To address the problem, some approaches have been pro-
posed, such as supplying adaptation rules [16], [17] or self-
adaptive methods [18] for the existing software architecture.
These approaches need rules, models or solutions to meet
dynamic requirements. However, it is hard to propose common
rules, models or solutions for interacting with the social
space and the physical space simultaneously. Therefore, it still



implies inefficiency of these approaches to interoperate with
the control plane, especially the entity service maintenance
and deployment module (ESMDM) shown in Fig. 1, to update
entity services.

In this paper, based on our previously designed software
architecture for developing IoT application systems [19], [20],
[21], (i) we consider common characteristics of entity services
according to the ternary theory, and abstract the functionalities
of an entity service in social, cyber, and physical spaces
into application model, sense-execute model and physical
model, respectively, thus devising a Physical Model Driven
software Architecture (PMDA) for guiding design of entity
services; (ii) we propose an evolution Mechanism of Entity
Services (eMES) to change, add or remove some inner software
modules of entity services and connect them together, in order
to reduce maintenance cost of entity services when adapting
them to dynamic requirements from the social space and to
the change of monitoring parameters of the physical space;
finally, (iii) the correctness of eMES is verified by a case
study and its effectiveness in reducing cost of developing and
maintaining IoT application systems comprised of large-scale
or frequently-changed entity services is verified by analysis.

The remainder of this paper is organized as follows. Sec-
tion II describes the related work. Section III gives brief intro-
duction of PMDA. Detail on eMES is presented in Section IV.
Section V shows the results of correctness verification and
effectiveness analysis of eMES. In Section VI, we make a
conclusion.

II. RELATED WORK

There are mainly three existing approaches that can be
applied in maintaining entity services developed with distribut-
ed objects [12], mobile agents [13], or web services [14],
[15], namely self-adaptive architecture [22], agent-based
method [23] and modular update approach [24].

A self-adaptive architecture is built on a reusable framework
which includes adaptive rules for the dynamic requirements.
If the requirements of these software systems changes, the
framework is able to monitor the changes and performs
adaptation rules on these software systems.

Agent-based methods are essentially based on an interaction
model to drive the agents to be adapted to the dynamic require-
ments. The interaction model includes interaction specification
and interaction coordination, which are dynamically defined
and amended according to the dynamic requirements of these
software systems. Agent is illustrated by BDI (Belief, Desire,
and Intention) model, social roles or knowledge and action,
etc.

Finally, the modular update approach requires IoT software
repositories to push meta-data information about software
updates to IoT devices, which then select updates from a
repository, and verify and install the received updates. It is
proposed to partially update ROM of IoT devices, and be
mainly used in IoT operating systems based on micro-kernel
architecture.
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Fig. 2. Refined structure of PMDA.

These solutions can perform well in adapting software mod-
ules to dynamic requirements from the social space. However,
they are still inefficient to interact with the social space and
the physical space simultaneously, especially inefficient to
interoperate with the control plane, the entity service main-
tenance and deployment module (ESMDM), to update entity
services. In this paper, we build a new design model of entity
service to support cost-effective modification of the sensing or
controlling parameters of entity services in the physical space
to fulfill dynamic requirements from the social space.

III. SOFTWARE ARCHITECTURE OF ENTITY SERVICE

PMDA (Physical Model Driven Architecture) is a software
architecture to guide the development of entity services, which
can be interconnected to build IoT application systems. It
considers common characteristics of entity services according
to the ternary theory, separating their functionalities in social,
cyber, and physical spaces, and abstract them into three model-
s: application model, sense-execute model, and physical model.
The application model delivers the requirement information
(req-info) from the social space. The sense-execute model
receives req-info from the application model, and processes
sensory data (sen-data) from the physical space and generates
execution information (exe-info) to the change the status of
physical space, according to the req-info and the sen-data.
The physical model provides sen-data to the sense-execute
model and receives exe-info from the sense-execute model
to interact with the physical space. Therefore entity services
in IoT application systems can parse the requirements of
users, and take proper actions to sense or change the status
of the physical entities. To apply the software architecture
in implementing IoT application systems, we refine all the
models of PMDA, as shown in Fig. 2.

The Application Model has two components, namely REQ
and EXTR. The component REQ delivers the requirements
from the users, and the component EXTR extracts the re-
quirements which mostly include operations on the physical
environment.



The Sense-Execute Model is made of six components,
which are JUDGE, ASSOCIATE, DECOMPOSE, SENSE,
PROCESS and EXECUTE. The component JUDGE decides
whether the requirements can be fulfilled without involving
other entity services besides itself. If false, the component
ASSOCIATE processes the requirements and forwards the
requirements to other entity services. If true, the component
DECOMPOSE decomposes the requirements into two parts,
which are related to sensing and controlling operations on
the physical environment respectively. Accordingly, the com-
ponent SENSE collects the required sensory data, and the
component EXECUTE generates control information based
on the requirements for control and the sensing information.
The component PROCESS, which is between SENSE and
EXECUTE, is responsible for processing the sensory data and
generates the sensing information.

The Physical Model consists of two components, named
OBJECT and ACT, respectively. The component OBJECT
provides the sensory data to the component SENSE. The
component ACT acts on the component OBJECT and changes
status of the physical environment according to the control
information of the component EXECUTE.

IV. MAINTENANCE METHOD OF ENTITY SERVICE

Considering the dynamic requirements from the social s-
pace, the sensing or controlling parameters of the related entity
services in the physical space should be changed frequently.
So we first analyze the types of changing physical models,
and figure out corresponding operations for changing the
sense-execute models, followed with formal description of the
evolution Mechanism of Entity Service (eMES).

A. Types of changing physical models

The two key characteristics of physical models are physical
area and physical parameters, which can be different for dif-
ferent IoT applications systems. So we can represent physical
models with these two characteristics, as illustrated in Fig. 3,
where pmn is short for the name of physical model, par is short
for physical area, and pps is short for physical parameters. The
possible changing types of physical models are determined by
both changing physical area and changing physical parameters.

Fig. 3. Representation of a physical model.

1) Changing physical area: We denote the physical area
of a physical model as a circle (x, r), which is widely taken
as a simplified theoretical sensing coverage model of smart
devices [25], [26]. x is the center of the physical area, and
r is the radius of the area. So for the physical model in an
entity service, its physical area can be changed as follows.

(1) Shrink the location (SHRINK). For example, originally
an entity service can monitor an area with radius of r meters,
but now it can only monitor an area with radius of s meters
(s < r).

(2) Enlarge the location (ENLARGE). It can be explained
with the same example as shown above, but now it can monitor
an area with radius of e meters (e > r).

(3) Move to new location (MOVE). For example, the center
of the physical area of the entity service (i.e. x = B) is moved
to a new place D (i.e. x = D).

The three types of changing par in physical model are
depicted by an example shown in Fig. 4.
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Fig. 4. An illustration depicting the three types of changing physical area
(par) of physical model.

2) Changing physical parameters: For the physical model
in an entity service, its physical parameters can be changed as
follows.

(1) Add new physical parameters (ADD). For example,
originally an entity service can monitor CO and CO2. If the
node is added a pH sensor, the physical model should be
extended to provide the new function.

(2) Delete some physical parameters (DELETE). For exam-
ple, the entity service stops providing the CO2 parameter for
IoT applications.

(3) Replace physical parameters (REPLACE). For example,
the entity service stops providing a part of (or all of) physical
parameters (i.e. CO2), and adds some new sensors (i.e. pH).

The three types of changing pps in physical model are
illustrated by an example shown in Fig. 5.

2

2

Fig. 5. An illustration depicting three types of changing physical parameters
(pps) of physical model.

3) Changing both physical area and physical parameter:
Based on the three changing types of par and three changing
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Fig. 6. Illustration of the relationship between a sense-execute model and
physical models.

types of pps for a physical model, we can deduce that there are
nine types of changing both par and pps of a physical model.
The nine changing types are illustrated as follows. (SHRINK,
ADD), (SHRINK, DELETE), (SHRINK, REPLACE), (EN-
LARGE, ADD), (ENLARGE, DELETE), (ENLARGE, RE-
PLACE), (MOVE, ADD), (MOVE, DELETE), (MOVE, RE-
PLACE).

It is worth noting that when the radius of physical area is
shrunken to zero or its center is changed to null, or the last
physical parameter is deleted, the entity service is removed
from the physical space or all its functions is terminated. In
other words, an extreme case of the changing types (SHRINK,
DELETE) and (MOVE, DELETE) occurs, when either par or
pps is changed to null.

B. Operations for changing sense-execute models

Based on the above analysis of types of changing physical
models, in this section we figure out operations for changing
the sense-execute models accordingly. As shown in Fig. 2, a
sense-execute model interacts with a physical model to process
physical parameters of an entity service. The relationship be-
tween a sense-execute model and physical models is illustrated
in Fig. 6. The name of the sense-execute model is denoted
as semn. The process ability of a sense-execute model is
denoted as pro, which consists of several physical parameters
it can process. We can see that more than one physical
model can share a sense-execute model. When physical models
change, the related sense-execute model should undergo some
operations to change accordingly. Through analysis, we find
that the operations include ERASE, UPDATE and LOOKUP,
which are introduced as follows.

1) The UPDATE operation: For the DELETE changing
type of physical parameters, the changed physical parameters
(pps) of the physical models are still subsets of the process
ability (pro) of the related sense-execute model. So if the
changing types for the physical models are (*, DELETE),
where * means the types of changing physical area can be
any of SHRINK, ENLARGE, and MOVE, the deleted items
of <par, pps> of the related sense-execute model should be
updated, while the relationship between the changed physical
model and the sense-execute model does not need to be
updated.

2) The LOOKUP operation: If the changing types for
the physical models are (*, ADD), (*, REPLACE), and the

changed pps of the physical model is not in the process
ability (pro) of the corresponding physical processing system,
a LOOKUP operation is needed to setup a new relationship
between the physical model and the found sense-execute
model. The LOOKUP operation mainly consists of the fol-
lowing steps: (1) remove the related <par, pps> from the
sense-execute model; (2) remove the relationship between
the physical model and the sense-execute model; (3) search
an appropriate sense-execute model for the changed physical
model according to the new physical parameters.

3) The DEPLOY operation: If no appropriate sense-execute
model is found for the new physical model, a new sense-
execute model should be deployed. The DEPLOY operation
includes two steps. The first step is to register the physical
area and physical parameter of the new physical model to the
deployed sense-execute model. The second step is to setup a
relationship between the deployed sense-execute model and
the new physical model.

4) The ERASE operation: If the changing type of physical
model is ZERO, which means the physical model terminates
because its physical area or physical parameter becomes null,
the related <par, pps> should be removed from the corre-
sponding sense-execute model and the relationship between
the sense-execute model and the physical model should also
be removed.

5) The UPDIRS operation: It is worth noting that in the
above analysis of types of changing physical model and
operations for changing sense-execute model, we can see
that for the operations of UPDATE, we should update the
items of <par, pps> of the related sense-execute model. For
LOOKUP, DEPLOY and ERASE, we should not only update
the items of <par, pps> of the related sense-execute model,
but also update (i.e. remove or setup) the relationship between
the sense-execute model and physical models. So we define
the operation of updating the relationship between physical
models and the related sense-execute model as UPDIRS.

C. eMES and its formal description

Based on the above analysis of types of changing physical
models, and corresponding operations for changing the sense-
execute models, we design the evolution mechanism of entity
service (eMES) with the following procedures. (1) Determine
the initial relationship between the physical models and the
sense-execute models. (2) Judge the changing types of the
physical models. (3) Update the sense-execute models in
accordance with the changed physical model. At the same
time, change the interaction relationship between the changed
physical model and the updated sense-execute model. If the
required sense-execute models do not exist, deploy them.

According to the above explanation of types of changing
physical model and all possible operations for changing cor-
responding sense-execute model, we express the evolution rule
of entity services by

{Rsem−pm, (Cpm, pm
′
j)} → {Osem−pm, Rsem−pm},
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Fig. 7. Illustration of the procedure of the evolution mechanism of entity
service.

where Rsem−pm is the set of relationship between sense-
execute model and physical model, (Cpm, pm

′
j) represents the

type of changing physical model and the changed physical
model respectively, Osem−pm is the operation for changing
the sense-execute models and the relationship.
Rsem−pm, Cpm, Osem−pm are defined as follows.

Rsem−pm = {(sem1, pm1), (sem1, pm2), . . . , (semi, pmj),

. . . , (semm, pmn)}, 1 < i < m, 1 < j < n

Cpm ∈{(SHRINK,ADD), (SHRINK,DELETE),

(SHRINK,REPLACE), (ENLARGE,ADD),

(ENLARGE,DELETE), (ENLARGE,REPLACE),

(MOVE,ADD), (MOVE,DELETE),

(MOVE,REPLACE),ZERO}

Osem−pm ∈ {ERASE&UPDIRS,UPDATE&UPDIRS,

LOOKUP&UPDIRS,LOOKUP&DEPLOY&UPDIRS}

So the above expression of the evolution rule of entity ser-
vices means that, given the set of relationship between sense-
execute model and physical model, and a changed physical
model and changing type, we can determine the operation
for changing the sense-execute models and the relationship,
and the relationship between sense-execute model and physical
model after changing. The evolution procedure is depicted in
Fig.7. Each operation in the procedure is defined by a process
separately, as described below.

(1) Process IRS to express Rsem−pm in the evolution
mechanism, which includes only one event (i.e. ‘generate’).

(2) Process JUDGE to express the procedure of judging
which operation is to be done.

(3) Process ERASE corresponds to the ERASE operation,
which includes two events (i.e. ‘erase’ and ‘unlinkera’).

(4) Process UPDATE corresponds to the UPDATE opera-
tion, which includes only one event (i.e. ‘update’).

(5) Process LOOKUP corresponds to the LOOKUP opera-
tion, which includes three events (i.e. ‘unlinkup’, ‘search’, and
‘link’).

(6) Process DEPLOY corresponds to the DEPLOY opera-
tion, which includes two events (i.e. ‘register’ and ‘link’).

(7) Process ERAISA, UPDISA, LOOKISA, and DPYISA
correspond to the UPDIRS operation after the ERASE, UP-
DATE, LOOKUP and DEPLOY operation respectively.

V. CORRECTNESS VERIFICATION AND EFFECTIVENESS
ANALYSIS

The IoT system taken as a case study here consists of four
environment monitoring entity services, as shown in Fig. 8,
which are deployed in four areas (i.e. area A, area B, area
C, and area D) of a city to provide physical data of the
environment, namely humidity, temperature, CO, and CO2

respectively. We take JCSP 1.1 [27] to develop and maintain
an entity service based on PMDA and eMES.

Entity service C in area C

Entity service B in area B

Entity service D in area D

pmB

pmC

pmD

temperature

CO2

CO

semB
Req-B

Req-C

Req-D

semC

semD

Entity service A in area A

pmA

humidity

semA

Req-A

Fig. 8. The organization structure of the IoT system taken as a case study.

A. Implementation of entity services

Due to space limitations, Fig. 8 only shows the entity service
A as an example to be developed. First we implement the
software modules in the entity service according to PMDA
as components based on the JCSP programming framework.
Then, we implement channels in a linker for connecting
these components. Finally, we connect all the components
with the developed channels. In Fig. 9, we partially illustrate
the implementation of the JUDGE-C software module in the
environment monitoring entity service. We can see that the
components JUD-P and LOC-P are connected by the channel
named chan3.

Each entity service (ES) is developed through the approach
presented above. In Fig. 10, we illustrate the implemented enti-
ty services with the main modules of the sense-execute model



public final class JUD-P implements CSProcess {
boolean s=false;
String App_type;
private final ChannelInput in;
private final ChannelOutput out;
public JUD-P (ChannelInput in, ChannelOutput out){

this.in=in;
this.out=out;

}
public void run ()
{  

JUD-P

chan3.out chan3.in chan5.outchan2.in

LOC-P

public final class LOC-P implements CSProcess {
String req_content;
private final ChannelInput in;
private final ChannelOutput out;
public LOC-P (ChannelInput in, ChannelOutput out){

this.in=in;
this.out=out;

}
public void run ()
{  

new JUD-P (chan2.in(), chan3.out());
new LOC-P (chan3.in(), chan5.out());

Fig. 9. Illustration of partial implementation of the JUDGE-C software
module in the environment monitoring entity service.

(i.e. JUDGE-C, ASSOCIATE-C, DECOMPOSE-C, SENSE-
C) and the main module of the physical model (i.e. OBJECT-
C).

B. Implementation of maintenance method

The main procedures of maintaining entity services accord-
ing to eMES is also implemented in JCSP, as depicted in
Fig. 10. In the center of the figure, the gray box contains the
components and linkers for implementing eMES, which cor-
responds to the “Entity Service Maintenance and Deployment
Module” (ESMDM) in the controller of software defined IoT
shown in Fig. 1. More detailed description of ESMDM and its
interaction with developed entity service is presented below.

(1) All the implemented entity services connect with ES-
MDM through channels.

(2) The component IRS in ESMDM corresponds to the
process IRS in eMES, which realizes the function of registering
all the entity services to the SEM-PM relationship set.

(3) The component JUDGE in ESMDM corresponds to
the process JUDGE in eMES, which realizes the function of
detecting the physical parameters of all the entity services and
judge the changing type of each entity service.

(4) The components ERASE, UPDATE and LOOKUP in
ESMDM correspond to the process ERASE, UPDATE and
LOOKUP in eMES respectively. If the component LOOKUP
can find appropriate sense-execute model for the changed
physical model, it will make association between the found
sense-execute model and the changed physical model, and re-
construct the SEM-PM relationship set by calling the function
of the component UPDIRS.
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Fig. 10. Depiction of implemented maintenance procedures of eMES in JCSP
1.1.

(5) If the component LOOKUP cannot find any sense-
execute model for the changed physical model, the compo-
nent DEPLOY will be called to deploy a new sense-execute
model, and refresh the SEM-PM relationship set by calling
the function of the component UPDIRS.

(6) The component UPDIRS updates SEM-PM relationship
set for all the registered, added, or changed physical models
of entity services.

C. Correctness verification

In the case study, we initially implement some entity ser-
vices based on PMDA and the main processes of eMES in
JCSP, through linking 4 physical models (i.e. Temperature,
Humidity, CO, and CO2) with corresponding sense-execute
models, which have the process ability (pro) of Temperature,
Humidity, CO, and CO2 respectively. The initial SEM-PM
relationship set are kept in the “Entity Service Maintenance
and Deployment Module” (ESMDM) of the controller, as
shown in Fig. 10. We also implement a sense-execute model
(semi) to process physical parameters of CO and PM2.5
together. However, semi is not initially registered into the the
SEM-PM relationship set in ESMDM. Then we test the results
of eMES with some simulated scenarios by changing physical
parameters of some specific entity services to trigger evolution
of corresponding entity services. Taking the entity service with
a physical parameter (pps) of CO as an example, the sequence
of testing is listed in Table I.

From Table I we can see that each group of testing sequence
fully covers the possible cases of evolution mechanism. The
results show that the SEM-PM relationship set can be updated
in consistence with changed entity services, which verifies
correctness of the proposed method of developing and main-
taining entity services. Next, we will analyze how effective is
our proposed method of maintaining entity service in software
defined IoT.



TABLE I
A GROUP OF TESTING SEQUENCE

Changing
pps (CO)
to

Operation for
changing the sense-
execute models and
the relationship

Tested Path of
evolution mech-
anism (refer to
Fig. 7)

SEM-PM re-
lationship set
in ESMDM

CO+PM2.5 LOOKUP&
DEPLOY&UPDIRS

(1),(2),(5),(6),(7) Updated
consistently

CO UPDATE&UPDIRS (1),(4),(7) with the
CO2 LOOKUP&UPDIRS (1),(2),(5),(7) changed
null ERASE&UPDIRS (1),(2),(3),(7) pps

D. Effectiveness analysis

In order to explain the effectiveness of maintaining entity
services with eMES, we compare them with the way used
to develop entity services with ASO [13] and reconstruct the
ASO entity services when the required physical parameters
change.

We assume that the cost for developing and maintaining
an entity service with ASO is C1. The number of entity
services needed to construct an environment monitoring IoT
system is N . Assuming that the expected times of changing
requirements is M−1, the cost for developing and maintaining
the system is CASO = N ∗C1+(M−1)∗N ∗C1 =M ∗N ∗C1.

According to PDMA, sense-execute model and physical
model need to be developed separately, while ASO does not
has such a need. We assume that the extra cost for separate
development α∗C1, where α is the ratio of the cost for separate
developing sense-execute model and physical model with
PMDA to the cost for developing and maintaining an entity
service with ASO. So the cost for developing and maintaining
an entity service with PMDA and eMES is (1+α) ∗C1. Two
other costs for PMDA and eMES are listed below.

(1) The cost of developing and maintaining the “Entity
Service Maintenance and Deployment Module” (ESMDM) in
the controller of software defined IoT is C2.

(2) The cost of registering all the entity services to ESMDM
is N ∗ C3, where N is the number of entity services needed
to construct an environment monitoring IoT system, C3 is the
cost for registering an entity service to ESMDM.

We use η to denote the ratio of the failure times to find
appropriate sense-execute models to the times of requiring
changes of physical parameters. Assuming that the expected
times of changing requirements is M−1, the cost of deploying
new sense-execute models is η ∗ (M − 1) ∗N ∗ (1 + α) ∗C1.

From the above analysis, we can see that the total cost of
developing and maintaining entity services with PMDA and
eMES is CPMDA = N ∗ (1 + α) ∗ C1 + η ∗ (M − 1) ∗ N ∗
(1 + α) ∗ C1 + C2 + N ∗ C3. We define the effectiveness of
our proposed method as the ratio of CPMDA to CASO, which
is denoted by θ.

θ =
(1 + α) ·N · C1 · [η · (M − 1) + 1] + C2 +N · C3

M ·N · C1

=
(1 + α) · (ηM − η + 1)

M
+

1

MN
· C2

C1
+

1

M
· C3

C1

Fig. 11. The ratio of CPMDA to CASO (θ) changes with the times of
changing requirements (M ).

Fig. 12. The ratio of CPMDA to CASO (θ) does not change with the number
of entity services (N ).

We assume that α = 0.5, C2

C1
= 0.3, C3

C1
= 0.05, based on

experience of developing IoT system. In particular, if the cost
for developing and maintaining an entity service with ASO is 1
day*person, the cost for developing and maintaining an entity
service with PMDA and eMES is about 1.5 days*person. The
averaged cost of developing and maintaining the ESMDM in
the controller of software defined IoT for each entity service,
and that of registering it to ESMDM can be approximately 0.3
day*person and 0.05 day*person, respectively.

Fig. 11 illustrates the ratio of CPMDA to CASO (θ) changes
with the times of changing requirements (M ). If θ < 1, it
means that our proposed method has lower development and
maintenance cost than ASO. We can see that in all cases
that η is from 0.2 to 0.6, θ is less than 1, which means that
our proposed method is more effective than ASO in reducing
development and maintenance cost. With increasing times of
changing requirements, the effectiveness will be higher. Fig. 12
illustrates θ changes with the number of entity services (N ).
We can see that in all cases that η is from 0.2 to 0.6, θ is not
changed with increasing number of entity services. Hence, the
effectiveness of our proposed method (θ) is more sensitive to
the times of changing requirements (M ) than the number of
entity services in system (N ).



VI. CONCLUSION

Entity service which abstracts sensing and executing de-
vices in the physical space has been taken as a basic unit
for constructing IoT systems. With more and more entity
services occurring, a software-defined network approach has
been applied in building IoT system, to ease managing and
updating large-scale entity services. Currently, entity services
are mostly developed with the same software architecture as
traditional services in Internet have an inherited problem in
adaptability. In order to solve the problem, we consider com-
mon characteristics of entity services according to the ternary
theory, and separate the functionalities of a entity service in
social, cyber, and physical spaces from each other, and abstract
them into three models, which are application model, sense-
execute model and physical model, and design a Physical
Model Driven software Architecture (PMDA). Furthermore, to
reduce maintenance cost of entity services when adapting them
to different requirements from the social space and change
monitoring parameters of the physical space, we propose an
evolution Mechanism of Entity Services (eMES) to change, add
or remove some inner software modules of entity services and
link them together. We have implemented some entity services
based on PMDA and the main processes of eMES in JCSP.
Through a case study, we show the correctness of maintaining
entity services by eMES. Besides, some analytical results show
the effectiveness of eMES in reducing the cost of developing
and maintaining IoT application systems, which are composed
of large-scale entity services or with frequent changes of
requirements.
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