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Abstract—It is well known that there are two kinds of
causes, namely channel-errors and collisions, which lead to high
probability of packet losses and errors in wireless networks. The
ability of discriminating the above two causes provides many op-
portunities for implementing high efficient networking protocols
in wireless sensor networks (WSNs). This paper presents Eas-
iPLED, a discriminator that can accurately and timely predict
these two causes. EasiPLED has three salient features. First, it
investigates F-BER patterns and statistic characteristics of RSSI
in different indoor environments through extensive experimental
studies. F-BER is the Frame-level Bit Error Rate measured at
the receiver side by a coarse-grained method without incurring
any overhead. An adaptive RSSI estimator based on error-based
filter is proposed to mitigate effects of noise on RSSI readings for
successfully received packets. Second, EasiPLED designs an off-
line dominant-factor classifier using machine learning method.
The classifier takes a combination of F-BER and RSSI features
as input and outputs the probability of dominant causes of
failed transmissions. Finally, it presents a lightweight on-line
discriminator which diagnoses the root cause of a packet loss or
error when it occurs at the receiver side. Experimental results
show that EasiPLED achieves an accuracy by up to 95.4%.
We evaluate the effectiveness of EasiPLED by applying it to
link-layer retransmission scheme, which yields a reduction of
single-hop transmission delay by up to 47%, and provides high
packet delivery ratios as compared to the existing retransmission
methods.

I. INTRODUCTION

It is widely aware that packet transmission failures, namely
losses and errors, occur with high probability during transmis-
sions in wireless networks [1, 2]. The causes that induce such
failures can be classified into two main categories: channel-
errors and collisions. The former stems from channel fading
or multi-path fading at physical layer. The latter is mainly due
to multiple concurrent packet transmissions within the same
network, or high power cross-technology interferences from
other networks, such as 802.11 networks. For protocol design
in wireless sensor networks (WSNs), it is crucial to know
the exact causes of packet losses and errors to improve its
performance. For example, MAC-layer protocols could adapt
operation decisions (e.g., channel allocation, power control
or retransmission) according to current packet transmission
outcomes [3]. Routing protocols could select links with lower
channel-errors but temporarily heavier interference to route
packets more reliably and rapidly [4]. It is worth noting that
in this paper we differentiate packet loss from packet error.
In particular, the former occurs when receiver does not sense
any bits of a packet, while the latter occurs when receiver
receives a packet with one or more error bits.
Despite its potential for improving protocol performance,

Fig. 1. EZ240 sensor mote

such as robustness and efficiency, diagnosing causes of packet
transmission failures has received little attention in WSNs.
A few research work [2, 5] have been presented for 802.11
networks, but they are not applicable to WSNs due to their
moderate to significant measurement overheads. To the best
of our knowledge, only two recent research work [6, 7] have
been proposed for WSNs. [6] is implemented on USRP and
is hard to implement on current commercial sensor motes.
[7] needs continuous RSSI sampling which incurs significant
measurement overhead.
To cope with above problems, we design a novel discrimi-

nator, named EasiPLED, to predict the root causes of packet
transmission failures for indoor WSNs. Essentially, EasiPLED
is designed by exploiting our observed fact that error packet
tends to have more error bits and its RSSI fluctuates more
sharply in collision-dominated environments. In particular,
EasiPLED models and trains a dominant-factor classifier using
machine learning method. EasiPLED is motivated by the
increasing mission-critical indoor WSN applications, such as
industrial monitoring and health care, in which the reliable
and timely communications are crucial. Channel-errors and
collisions pose great challenges to such applications, as they
lead to transmission failures, high delay and reduce com-
munication reliability due to incorrect operations. EasiPLED
explicitly feeds back discrimination results from the receiver
to the transmitter. Therefore, EasiPLED provides transmitter
accurate and timely information necessary for implementing
robust and reliable networking protocols, thereby improving
the performance of communications in WSNs.
We implement and evaluate EasiPLED on our EZ240

sensor mote [8] as shown in Fig. 1 using TinyOS-2.x op-
eration system. EZ240 is equipped with a 802.15.4-compliant
CC2420 radio [9]. Experimental results show that EasiPLED
distinguishes the causes of transmission failures with an
accuracy range between 86.3% and 95.4%. We also evaluate
the effectiveness of EasiPLED by introducing it to link-
layer retransmission scheme, which reduces the single-hop
transmission delay by 13% to 47%, while keeping relatively



high single-hop packet delivery ratios.
This paper makes the following three main contributions.
First, we study frame-level bit error rate (F-BER) patterns

and statistic characteristics of received signal strength indica-
tor (RSSI) and link quality indicator (LQI) through extensive
experimental measurements in different indoor scenarios with
diverse settings.
Second, we design a coarse-grained F-BER computation

method at the receiver side without requiring explicit knowl-
edge of data content sent by the transmitter. Also, we propose
an adaptive RSSI estimator based on error-based filter. Then,
we adopt a cross-layer design scheme which combines F-
BER and RSSI together as input features to model and train
an off-line dominant-factor classifier using machine learning
method. The classifier outputs the probability of causes that
induce packet transmission failures, either channel-errors or
collisions.
Finally, we present a lightweight and timely on-line dis-

criminator, which predicts the root cause of every failed trans-
mission. Based on the discrimination results of EasiPLED,
we optimize link-layer retransmission scheme to improve the
performance of WSNs in terms of single-hop transmission
delay without sacrificing communication reliability.
The remainder of the paper is organized as follows. Sec-

tion II discusses some related work on diagnosis of packet
transmission outcomes. In Section III, we perform exten-
sive experimental study to investigate the features of packet
transmission failures. Section IV describes the design details
of EasiPLED. An adaptive link-layer retransmission scheme
based on EasiPLED is presented and evaluated in Section V.
Section VI concludes the paper.

II. RELATED WORK

Related work falls into the following two categories.
PHY-based: PHY-based methods exploit physical-layer infor-
mation to classify packet transmission outcomes. COLLIE
[2] examines error patterns within a physical-layer symbol
to separate collision from weak signal for 802.11 networks.
However, COLLIE requires the receiver to feed back error
packets to the sender. So COLLIE is not applicable to WSNs
because of the following reasons. First, the error packet may
be corrupted again when it is sent back to the transmitter.
Second, it incurs significant measurement overheads and re-
duces energy efficiency and bandwidth utilization. SoftRate
[10] identifies collision by detecting sudden changes in the
BER estimated from SoftPHY hints. SoftRate is designed for
802.11 networks and needs access to physical layer which
is difficult to implement on the current commercial sensor
motes. [7] studies chip error patterns in physical layer based
on IEEE 802.15.4 standard. Thus, it also needs access to
physical layer and is hard to implement on the sensor motes.
[6] presents a joint RSSI-LQI based classifier for WSNs,
which classifies packet transmission outcomes into four types:
lost, successfully received, error due to collisions and error
due to weak signal. However, it does not discriminate the
causes of packet losses. Moreover, it needs continuous RSSI
sampling which incurs heavy overhead, thus leading to high
energy consumption.
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Fig. 2. 802.11b/g and 802.15.4 channels in 2.4 GHz ISM band

Frame-based: Frame-based methods [11, 12] use RTS/CTS
frames to distinguish between collisions and channel-errors
under the assumption that the packet lost is duo to collisions
if RTS-CTS exchange has completed. Because RTS-CTS
exchange has reserved channel, packet transmission will only
encounter failure by channel-errors. [5] uses RTS/CTS frames
and packet fragmentation mechanisms to isolate channel-error
induced packet losses. However, RTS/CTS is often disabled in
WSNs because it will introduce additional control overhead.

III. OBSERVATIONS FROM EXPERIMENTS

In this section, we conduct extensive experiments in dif-
ferent indoor environments to investigate F-BER patterns and
statistic characteristics of RSSI and LQI of received packets.

A. Background and Experimental Methodology
Background: CC2420 radio operates on a total of 16 channels
in 2.4 GHz unlicensed ISM band, numbered 11 through 26.
Each of these channels is 2 MHz wide with a center frequency
separation of 5 MHz for adjacent channels. CC2420 radio
provides a built-in RSSI and LQI sampling mechanisms. RSSI
is the estimate of signal power and is always averaged over
8 symbol periods. LQI is an average correlation value based
on 8 first symbols of each incoming packet.
Experimental setup and methodology: We conduct all our
experiments in three different indoor environments: dormitory
building of Chinese Academy of Sciences (Dor), top floor
(Roof) and laboratory (Lab) in ICT’s (Institute of Computing
Technology) office building. The objective of these experi-
ments is to explore F-BER patterns and statistic characteris-
tics of RSSI and LQI of received packets in channel-error-
dominated and collision-dominated environments.
1) Dor and Roof scenarios. We first conduct experiments in
environments without or with mild cross-technology interfer-
ence: Dor and Roof. In the Dor scenario, the sensor nodes are
sparsely deployed out of line of sight, and separated by doors
or thick walls. However, in the Roof scenario, the environment
is more open and the distances between nodes are in line of
sight. As shown in Fig. 2, two 802.15.4 channels, numbered 11
and 26, are free from potential 802.11 interference. Therefore,
in these two scenarios, we set nodes operate on channel 26 to
avoid interference from 802.11 networks. These experiments
mainly focus on capturing the features of packet losses and
errors caused by channel-errors or collisions from 802.15.4
transmissions.
2) Lab scenario. We also conduct experiments in our lab-
oratory. The nodes in this scenario operate on channel 23,
which mainly overlaps with two 802.11 channels, namely
channel 11 and channel 12. We find that, in our laboratory,
there are almost 25 active APs (Access Point) occupying
all channels except 14 during the office hours. So in the
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Fig. 3. Format of packet implemented in TinyOS-2.x

Lab scenario, packet transmissions on 802.15.4 channels will
suffer severe 802.11 interferences. These experiments are to
exploit the characters of transmission failures due to collisions
from 802.11 or 802.15.4 or both.
In all environments, we run experiments under various

settings by using different size of packets (22/87/127 bytes),
different number of transmitters, and different transmission
power levels. The experiments are conducted in daytime and
night to compare effects of light and heavy interferences
on nodes’ communication. In all experiments, we disable
clear channel assessment (CCA) to increase the probability
of collisions. The function of cyclic redundancy check (CRC)
and address recognition are also canceled to intercept error
packets. Moreover, data content sent by transmitters are ran-
dom numbers other than all zeros or all ones.
In single-transmitter scenarios, one transmitter sends 5000

packets every 300 millisecond to another receiver. The re-
ceiver records every received packet including those with er-
rors and their RSSI and LQI. In multiple-transmitter settings,
there are multiple transmitters, one receiver and one synchro
node. The synchro node broadcasts a synchro packet every one
second to make all transmitters send packets in synchroniza-
tion. We adjust transmission power level to ensure the receiver
can receive almost all packets successfully when there is no
interference. Every experiment is conducted repeatedly for 10
or more times.

B. Empirical Observations
In this section, we analyze the F-BER patterns and the

statistic characteristics of RSSI and LQI of received packets.
F-BER is the frame-level bit error rate of packet. Fig. 3 shows
the format of packet implemented in TinyOS-2.x. Due to space
limitations, we only plot a part of results observed in our
experiments, since the others are similar. Our key observations
from the above empirical studies are summarized as follows.
• As shown in Table I, error packets make up moderate to
significant fractions of whole received packets (E/R: 45.3% in
Dor, 22.9% in Roof and 57.8% in Lab), and the whole failures
(E/F: 53.8% in Dor, 87.6% in Roof and 44.8% in Lab). We
can make full use of information obtained from these error
packets to distinguish the causes of packet losses and errors.
• Fig. 4 plots the instant RSSI and LQI of all received packets.
We find that the instant RSSI and LQI fluctuate quickly.
Moreover, through deeper analysis of the results, we find that
averaged RSSI of error packets over a short-term increases
in the collision-dominated scenarios (e.g., Lab) but decreases
in channel-error-dominated scenarios (e.g., Dor and Roof).
However, averaged LQI of error packets decreases in all
scenarios. Meanwhile, as shown in Table I, the extent of RSSI
fluctuations in different scenarios is different. In collision-
dominated scenarios, RSSI varies more greatly than that in
channel-error-dominated scenarios. For example, the variance
of RSSI of error packets is 0.29 in Roof, while it is 16.4
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in Lab. However, the extent of LQI fluctuations has no such
differences between theses two scenarios. Based on these ob-
servations, we use the variance of RSSI fluctuations between
error packets and correct ones (denoted as var(RSSI)) as
one input feature of our machine learning model.
• Fig. 5 plots the empirical CDF of F-BERs. We find that
packets received with errors result from collisions have much
wider distribution of F-BERs. For example, 90% of error
packets due to channel-errors have F-BERs of 3% or less,
while only about 25% of error packets due to collisions have
F-BERs of 3% or less. Meanwhile, F-BERs under 802.11
and 802.15.4 interferences have similar distribution patterns
as shown in Fig. 5(b). Therefore, we use F-BER as another
input feature of our machine learning model.

IV. DESIGN OF EASIPLED

In this section, we present the design of EasiPLED in detail.

A. An Overview of EasiPLED

EasiPLED is data-driven and receiver-initiated which con-
sists of three main steps: information collection and analysis
(ICA), off-line modeling and training (OLMT) and on-line
diagnosis (OLD).
ICA: ICA step extracts features which characterize the causes
of packet losses and errors. Specifically, ICA passively cap-
tures all the arrived packets and records their RSSI values.
Meanwhile, ICA computes F-BER for every packet with error
bits, and then extracts features and builds training and testing
data sets for the next step OLMT.
OLMT: OLMT step achieves an off-line classifier using
machine learning method to predict the dominant factor of
packet failures. Our model takes a combination of F-BER and
var(RSSI) as input features, and outputs the probability of
dominant-factor that causes packet losses and errors, either
channel-errors or collisions.
OLD: OLD step implements a lightweight on-line discrimina-
tor, which runs at the receiver side and timely diagnoses the
root causes of a packet transmission failure when it occurs.



TABLE I
STATISTIC RESULTS WITH 127-BYTE PACKETS (VAR: VARIANCE, E: ERROR, F: FAILED (ERROR AND LOST), R: RECEIVED (ERROR AND CORRECT))

Scenario Mean(RSSI,C) Mean(RSSI,E) Var(RSSI,C) Var(RSSI,E) E/F E/R Mean(F-BER) Max(F-BER)
Dor -91.35 -92.46 0.35 0.51 53.8% 45.3% 0.9% 7.8%
Roof -91.49 -91.5 0.28 0.29 87.6% 22.9% 0.2% 1.3%
Lab -70.38 -66.95 3.8 16.4 44.8% 57.8% 17.3% 72.1%
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Fig. 6. Accuracy of F-BER computation method under different retransmis-
sion times

B. Information Collection and Analysis
For the ICA step, the novelty is mainly embodied in its

method to compute F-BER and estimate RSSI. Here, we
describe them in detail.
F-BER computation: The idea behind F-BER is inspired by
the error detection scheme employed in Ethernet. An Ethernet
station detects errors by comparing the transmitted signal
with the simultaneously received signal at the transmitter side.
However, in wireless networks, radio often operates in a half-
duplex mode and cannot send and listen simultaneously to
detect errors. Even if nodes have multiple radios, they can
not detect errors at transmitter side because any channel status
around the transmitter can not explain errors at receiver due
to signal attenuation.
In this paper, we present a coarse-grained F-BER computa-

tion method at the receiver side. Unlike COLLIE [2], it does
not need to know the content of packet sent by transmitter.
Because current protocols in link layer always employ re-
transmission schemes to ensure reliable communications in
WSNs. ICA keeps the error packet and computes F-BER when
the final correct one is arrived. If the packet is received by
multiple times of (re)transmissions with different bits in error,
we will compute F-BER for each time of (re)transmission. The
final F-BER is an average over its multiple (re)transmission
times. The accuracy of F-BER is affected by the retransmis-
sion times. Fig. 6 shows the accuracy of F-BER computation
method under different retransmission times. We find that
more than 95% of packets which are in error at first arrival can
be received successfully after three times of retransmissions.
In Section V, we will evaluate and discuss how EasiPLED
can be integrated to adapt link-layer retransmission scheme
in return.
RSSI estimation: Because RSSI reading is influenced by
hardware and communication environments greatly [13, 14],
we use error-based filter (EF) [15] to mitigate the effects of
noises on RSSI estimation of successfully received packets.
RSSI estimator is formulated as follows.

RSSIt = αRSSIt−1 + (1− α)RSSInew , (1)

where RSSIt is the current estimate of RSSI, RSSIt−1

is the prior estimate of RSSI, and RSSInew is the current
observation of RSSI. α is the smoothing factor, which is not
constant and calculated by the following formula.

α = 1−
δt

δmax

, (2)

where δt is the predictive power of the EF estimator, which
can be adapted to control the error deviation of the EF
estimator. So δt is also named as estimator error. When the EF
estimator produces estimates that match well with reality, it
increases the weight of the prior estimates through increasing
the smoothing factor α. Otherwise, it reduces the weight of
the prior estimates by decreasing the smoothing factor. The
estimate error δt is the absolute difference between the prior
estimate and the current observation. Rather than uses the
raw error directly, the EF estimator uses a secondary EWMA
(Exponentially Weighted Moving Average) filter to smooth
the estimation error δt.

δt = βδt−1 + (1− β)|RSSIt−1 −RSSInew|. (3)

δmax is the largest estimation error of the latest measurements.

C. Off-Line Modeling and Training
Problem modeling: Based on the features and data sets
provided by the ICA step, we propose to use machine learning
method to build a binary classifier model. Our model adopts
a cross-layer design scheme which takes the RSSI from
physical layer and F-BER from link layer as input, and outputs
the probability of the dominant-factor which causes packet
transmission failures. We use x to denote the input vector of
our model and is written as

x = [var(RSSI), F -BER], (4)

and y to denote the output which is the probability of the
dominant-factor, either channel-errors or collisions.

y = p(dominant-factor | x). (5)

We define the extent of RSSI fluctuation between error packet
and correct packet as follows.

d(RSSI) = (RSSIt(C)−RSSInew(E))2, (6)

where RSSIt(C) is the estimated value of RSSI of correctly
received packet, and RSSInew(E) is the current observation
of error packet. var(RSSI) is the standard deviation of the
last W d(RSSI)s. When the packet is lost, we set F-BER
to be the average of the last W error packets’. For the RSSI
value of the lost packet, it is set to be lower than the receiver
sensitivity threshold which is -95 dBm for the CC420 radio.
Model training and testing: The modeling method should
take following practical requirements into consideration.
1) Sampling complexity. The model should not need signifi-
cant deployment efforts for collecting training and testing data



sets in a long period. Otherwise, the overhead of collecting
data sets will outweigh the benefits gained by using the model.
2) Computation and space complexity. While training the
model offline can be computationally and spatially costly, the
implementation of on-line diagnosis using the trained model
should have low computation complexity and small memory
requirements.
Based on the above requirements, we address the binary

classification problem using logistic regression model. Lo-
gistic regression model is widely used in machine learning
field and can be easily to implement on the sensor motes.
Therefore, our problem can be modeled as follows.

p(y|x; θ) = (hθ(x))
y(1 − hθ(x))

1−y , (7)

where
hθ(x) =

1

1 + e−z
, (8)

z = θTx = θ0 + θ1var(RSSI) + θ2F -BER. (9)

We use y = 0 to denote channel-errors and y = 1 to denote
collisions.
All the data sets used in our model are obtained in three

scenarios introduced in Section III. We randomly choose 60%
of data sets to train our model, and the remaining 40% to
test our model. In the training process, we consider three
parameters: size of packet (L), size of feature estimation
window (W ) and size of training set (M ). For each setting,
we repeat the training and testing procedures for 10 times.
Results analysis: Here, we present evaluation results of our
model. We plot the mean square error (MSE) as a function
of L, W and M , respectively. Ideally, we would like to have
the MSE as low as possible when W and M are small and
irrelevant to packet size of L. As shown in Fig. 7, we find that:
1) Intuitively, the shorter the packet, the lower probability of
packet failures. However, once bit error occurs, the F-BER
pattern and statistic characteristics of RSSI have no great
difference in the settings with different packet size. 2) The
larger W , the smaller prediction error of the model. However,
this trend is negligible when W is greater than 3. Therefore,
our model should work reasonably well with a small size
of feature estimation windows, particularly it is 3 observed
from the figure. 3) When the size of training set M is larger
than 500, the prediction errors are all most the same. This
shows that we only need about 500 packets to train our model,
which enables our model easily be implemented in real WSNs
deployment.

D. On-Line Diagnosing
In this section, we describe the design of on-line discrim-

inator EasiPLED, which diagnoses the root causes for each
packet loss or error at the receiver side. The pseudo code of
EasiPLED is shown in Algorithm 1. Whenever node receives
a packet, it estimates the value of RSSI using the method
introduced in Section IV-B and records it in its neighbor
table. If the packet does not pass address recognition or CRC
check, receiver computes its F-BER and var(RSSI) using
the method introduced in Section IV-B and records them
in neighbor table. Receiver uses F-BER and var(RSSI) as
input of logistic regression model and outputs the probability

of dominant-factor p. In order to reduce the probability of
misclassification, we exploit the F-BER pattern of packet’s
header which further confirms the outputs of the logistic
regression model. Specifically, we measure the probability of
error occurred in CC2420 header of all error packets by the
metric RF -BER, which is defined as follows.

RF -BER =
# F -BER(header) �= 0

# F -BER(packet)
. (10)

When p falls into the critical region [0.5 - ε, 0.5 + ε],
EasiPLED initiates critical region detection process using the
metric RF -BER as shown from line 10 to 15 in Algorithm 1.
This is motivated by the observations that the probability of
header is corrupted in collision-dominant scenarios is much
lower than that in channel-error-dominant scenarios. We set ε
to 0.1 and F -BERh to 0.06 in our experiments.

Algorithm 1 EasiPLED algorithm
Input:

ε, F -BERh, θ0, θ1, θ2;
Output:

Root causes: channel-errors or collisions;
1: Compute F -BER;
2: Compute var(RSSI);
3: Compute p using logistic regression model with input

F -BER and var(RSSI);
4: if (p ∈ [0.5+ε, 1]) then
5: return collisions;
6: else
7: if (p ∈ [0, 0.5-ε]) then
8: return channel-errors;
9: else
10: Compute RF -BER;
11: if (RF -BER ≤ F -BERh) then
12: return collisions;
13: else
14: return channel-errors;
15: end if
16: end if
17: end if

We evaluate the performance of EasiPLED in Dor, Roof
and Lab environments. The prediction accuracy is computed
as the ratio of the number of correct diagnosis to the total
number of lost or error packets. The evaluation experiments
are conducted as presented in Section III with the exception
that here we enable CCA before transmissions. Fig. 8 shows
the evaluation results. As environment becomes more complex
and the number of contenders increases, it is more difficult to
identify the exact causes of packet losses or errors. Especially
in the environment where collisions or interference are severe
but signal is not very strong, the accuracy of diagnosis
decreases. However, the maximal rate of misdiagnosis is
13.7% which works well as evaluated in Section V. We also
evaluate the method used by [6] on our EZ240 sensor motes.
Evaluation results show that the joint RSSI-LQI method has
high prediction errors in our experiments, which can be up to
28%. This is because that the relationship between RSSI and
LQI can not be accurately captured by a simple linear model.
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V. APPLICATION OF EASIPLED TO LINK-LAYER
RETRANSMISSION SCHEME

In this section, we introduce EasiPLED to link-layer re-
transmission scheme and demonstrate how EasiPLED can
help make more intelligent retransmission decisions, therefore,
achieving a good tradeoff between delay and reliability.

A. Adaptive Retransmission Scheme based on EasiPLED
Per-hop retransmission (or Automatic Repeat Request,

ARQ) is a widely used technique in link layer to improve
the reliability of communication in WSNs [16]. ARQ has
two important operation parameters: retransmission times and
delay between consecutive retransmissions. Traditional ARQ
can be classified into two categories: fixed ARQ (F-ARQ)
and exponential ARQ (E-ARQ). F-ARQ adopts fixed retrans-
mission times and delays, no matter what is the causes of
packet transmission failures. E-ARQ takes for granted that
packet transmission failure is due to collisions and increases
retransmission delay exponentially when failure occurs. How-
ever, if the packet transmission failure results from channel-
errors, blindly increasing retransmission delay will increase
the single-hop transmission delay. On the contrary, if the
transmission fails due to collisions, a short retransmission
delay will increase the probability of repeated collisions and
finally leads to low reliability of communications. Therefore,
F-ARQ and E-ARQ can not adapt to different communication
scenarios. More retransmission times will improve the relia-
bility of communication, but increase transmission delay as
well. Therefore, ARQ has great impact on the performance of
link-layer protocols in terms of delay and reliability. Here, the
goal of our adaptive ARQ (A-ARQ) is to achieve a good trade-
off between delay and reliability by utilizing the diagnosis
results of EasiPLED to adapt the above two parameters of
retransmission scheme.
The key idea behind A-ARQ is intuitive. When the packet

transmission failure is diagnosed to be caused by collisions,
A-ARQ increases retransmission delay and reduces retrans-
mission times. Otherwise, A-ARQ retransmits packet imme-

TABLE II
RETRANSMISSION PARAMETERS USED BY DIFFERENT SCHEMES. CO:

COLLISIONS, CE: CHANNEL-ERRORS

Schemes Retransmission delay Retransmission times
A-ARQ CO: [0,25], CE: 0 CO: 2, CE: 4
F-ARQ 12/25 3
E-ARQ [0,25] 3

diately without any delay and increases retransmission times.
Because EasiPLED is implemented at the receiver side, so
we need feed back the diagnosis result of EasiPLED to the
transmitter. Therefore, we define another MAC control frame,
named non-acknowledgement packet (NACK). When packet
transmission failure is detected, receiver initiates EasiPLED
diagnosis process and then sends back a NACK frame to
explicitly inform the transmitter of the diagnosis result of
EasiPLED. The format of NACK is defined as the same with
that of acknowledgement (ACK).

B. Experimental Evaluation
Experimental setup: In this section, we evaluate the per-
formance of A-ARQ through experiments conducted in the
Roof and Lab scenarios. We integrate A-ARQ into CC2420
radio stack in TinyOS 2.x and implement it on the EZ240
sensor mote. In order to study the performance of A-ARQ in
environments with heavy contentions, three transmitters are
assigned to send 5000 back-to-back packets to a same receiver.
The transmitters are synchronized to start transmitting packets
at different time points. In each scenario, we consider different
distance from transmitter to receiver as shown in Fig. 9.
We adjust the distance between transmitter and receiver in
order to create collision-dominated (Lab) and channel-error-
dominated scenarios (Roof). We compare the performance of
A-ARQ with that of F-ARQ and E-ARQ in terms of single-
hop transmission delay and packet delivery ratio. The single-
hop transmission delay is the averaged transmission time of
the total transmitted packets. The experimental parameters
used in our study are shown in Table II. For F-ARQ, we
consider two settings: F-ARQ(12) with 12 ms retransmission
delay and F-ARQ(25) with 25 ms retransmission delay. The
results presented below are averages of 5 times of repeated
experiments.
Experimental results: Fig. 10 and 11 plot the single-hop
transmission delay and packet delivery ratio in the Lab and
Roof scenarios respectively.
• In comparison with F-ARQ and E-ARQ, A-ARQ reduces
single-hop transmission delay (by 13% to 47%) in all scenar-
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Fig. 9. Experimental topology
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Fig. 10. Single-hop transmission delay and packet delivery ratio in Lab
scenarios. Up: Distance 1, Middle: Distance 2, Down: Distance 3

ios without reducing the communication reliability. This is due
to its use of diagnosis results of EasiPLED to help make more
intelligent retransmission decisions. This observation can also
be validated by Fig. 12, which plots the instant delay of A-
ARQ and E-ARQ. We find that more packets in E-ARQ suffer
larger delays.
• In channel-error-dominated scenarios (Roof), the perfor-
mance improvement achieved by A-ARQ becomes not so
obvious and the PDR declines when compared to that in
collision-dominated scenarios. This is because we reduce
transmission power level in order to create channel-error-
dominated scenarios, which makes communication links more
unstable.
• F-ARQ(25) achieves relative high reliability at the cost of
high delay. In contrast, F-ARQ(12) has the worst reliability
in all scenarios because of its fixed retransmission decisions.
• Transmitter 2 has highest delay in both scenarios. This is
because it (re)transmits about one third of packets when there
are three transmitters send packets simultaneously. One the
contrary, transmitter 3 has the lowest delay.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents EasiPLED, a lightweight and timely on-
line discriminator, which can accurately and timely predict
the root causes of packet losses and errors at the receiver
side. Extensive experimental evaluations show that EasiPLED
can provide an accuracy by up to 95.4% without incurring
any measurement overhead. The effectiveness of EasiPLED
is also evaluated by the proposed A-ARQ, an adaptive link-
layer retransmission scheme. Experimental results show that
A-ARQ yields significant reduction in single-hop transmission
delay by up to 47%, as well as high packet delivery ratios as
compared to F-ARQ and E-ARQ.
We believe that our solution will benefit the development

of reliable and time-critical protocols for WSNs. In terms
of future work, we will evaluate our method in practical
applications.
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Fig. 11. Single-hop transmission delay and packet delivery ratio in Roof
scenarios. Up: Distance 1, Middle: Distance 2, Down: Distance 3
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Fig. 12. Instant delay using A-ARQ and E-ARQ schemes in Lab scenarios
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