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Abstract—The high-throughput, low-latency, and reliable data
delivery are fundamental demands of many networked appli-
cations, e.g. bittorrent and skype. But the inappropriate con-
gestion control of TCPs, caused by the reactive and coarse-
grained congestion feedbacks, brings the low link utilization,
high queuing delay and frequent packet loss in high bandwidth-
delay product network. To mitigate this issue, TCP variants
have been developed. Thereinto, the load factor based congestion
control (LFCC), e.g. VCP, BMCC, have shown the powerful
capabilities to achieve better performances in terms of high
link utilization, low persistent queue length, negligible packet
loss, and fairness. However, due to the conservative increase and
synchronized feedbacks, LFCC faces the slow convergence of
the link utilization and inter-flow fairness. This could incur the
large flow completion time of new-coming flows indirectly. To
solve the issue of existing LFCCs, an asynchronous congestion
control based on hybrid feedbacks, called HFCC, is proposed
to achieve the faster convergence while keeping the features of
LFCCs in this paper. Specifically, HFCC decreases the congestion
window when the bottleneck link is in the high-load region and
the flow rate exceeds the fair share of the bottleneck bandwidth,
or the bottleneck link is in the over-load region. Otherwise, HFCC
increases the congestion window. Note that an overlay coding
method is developed in HFCC. To reduce the flow completion
time, HFCC adopts an available bandwidth estimation method to
speed up the data delivery in the low-load region. The simulation
results indicate that HFCC has the better performance and faster
convergence than VCP, MLCP and BMCC.

Index Terms—congestion control, hybrid feedbacks, conver-
gence, fairness

I. INTRODUCTION

Most networked applications adopt the transmission control
protocol (TCP) [1], dominated by additive increase and mul-
tiplicative decrease (AIMD) [2], as underlying service to ex-
change vital data. But with the advancement of communicating
techniques, e.g. fibre-optical, high-speed wireless networks,
and the prevalence of high bandwidth delay product (HBDP)
networks, traditional TCPs are ill-suited. They could result in
the low link utilization, high packet loss rate, unacceptable
packet delay, etc. Hence, how to develop a high-efficiency
and robust congestion control protocol gains in importance to
improve the performance of TCPs in HBDP networks.

This work was supported by the National Natural Science
Foundation of China (No.61601252), Public Technology Projects
of Zhejiang Province(GG18F020020), Ningbo Natural Science
Foundation(2017A610129/2017A610116), Open Foundation of State Key
Laboratory of Networking and Switching Technology (Beijing University of
Posts and Telecommunications (SKLNST-2016-2-13).

Although TCP variants have been proposed to solve above
issue, they usually face a dilemma between the efficiency
and applicability. Generally, the existing protocols can be
classified into two categories: end-to-end and network-based.
Each category has their own merits and deficiencies.

The end-to-end congestion control (ECC) [3] rely on im-
plicit feedbacks, e.g. packet loss [1] [4], end-to-end delay [5]
[6], and synthesis of them [7] [8], to discern the network
congestion. They can be easily deployed without modifying
the Internet architecture. But, the packet loss and queuing
delay emerging when the network is congested, ECC pro-
tocols could lead to the unnecessary packet losses and high
packets delay in HBDP networks. Conversely, the network-
based congestion control (NCC) utilize explicit feedbacks [9]
[10], which are generated by intermediate routers and returned
to senders from receivers by modifying the IP header, to
adjust the congestion window (cwnd). They can provide more
information of the network congestion than ECCs. However,
NCCs face two deployed issues in the current Internet. On one
hand, they demand more bits for congestion feedbacks than
available in the IP header, which requires either changing the
IP header or the addition of a shim layer. On the other hand, the
intricate mechanisms in intermediate routers violate the inter-
flow fairness when the traditional TCP flows arise. Therefore,
the limited feedback schemes, e.g. VCP [11], MLCP [12], and
BMCC [13], were proposed. They require changes at end-hosts
with incremental support from routers.

This paper investigates the convergence speed of multi-
plicative increase (MI)-AIMD mechanisms in existing load
factor based congestion control (LFCC) protocols, which
adopt the explicit congestion notification (ECN) [14] [15] to
convey the Load Factor (LF). To this end, a novel protocol,
named hybrid feedback-based congestion control (HFCC), is
proposed. It adopts asynchronous feedbacks for different flows
and is compatible with the existing ECN. In addition, we
present the experimental analysis that provide insights into the
convergence properties and performance of HFCC. Different
from VCP, HFCC rely on the overlay coding of the fair-Share
Factor (SF) and LF to convey the network condition. This
could result in the better convergence and the fairer bandwidth
allocation in HBDP networks while keeping the low packet
delay and negligible packet loss rate. Furthermore, HFCC
outperforms VCP and is slightly better than other schemes
in the flow completion time (FCT).



The rest of this paper is organized as follows. We summarize
related works in section II. In section III, we provide the moti-
vation of HFCC. In section IV, the HFCC protocol is designed
based on the overlay coding of SF and LF. To evaluate the
HFCC protocol, we conduct extensive experiments using a
canonical network simulator (NS2) in section V. Finally, the
conclusion is presented in section VI.

II. RELATED WORK

In recent decades, TCP variants have been largely proposed
to enhance the standard TCP in HBDP networks. They focus
on how to control cwnd effectively. Actually, the detection of
network congestion is a key point to adjust the congestion
window. Hence, how to convey the feedbacks of network
congestion is one of the most important thing for congestion
control in HBDP networks. In section I, we have mentioned
that TCP variants can be roughly classified into ECC and NCC.

The ECCs rely on the packet loss or delay to detect
the network congestion and can be divided into the packet
loss-based congestion control (PLCC), the packet delay-based
congestion control (PDCC) and the synergy of both of them.
To improve the performance of PLCCs in HBDP networks,
most TCP variants, such as HSTCP [26], STCP [27], and
CUBIC [4], modify the AIMD parameters and the controlling
function of cwnd to achieve the high link utilization rapidly.
However, the aggressiveness to adjust the congestion window
causes the throughput oscillation of TCP flows.

Different from PLCCs, PDCCs assume that the increase in
RTTs indicates the coming of the network congestion and
attempt to proactively adjust cwnd based on the variation
of RTTs. In [28], Jain et al. proposes the first PDCC. After
that, Vegas [5] was proposed to improve Reno’s throughput.
To adapt to HBDP networks, FAST [6] was proposed to
grab the network bandwidth rapidly. However, the inaccuracy
of the RTT measurement often makes PDCCs inefficient.
Moreover, PDCCs also suffer from significant low throughput
if the competing flows are PLCCs, e.g. Reno. Synthesizing the
advantages of PLCCs and PDCCs, the synergy schemes, such
as CTCP [7] and ACCF [8], were proposed. To reduce the
retransmission upon packets loss, Cui et al. [29] believes that
the coding can improve TCPs. Broadly speaking, the weakness
of ECCs is that actions are taken only after the network
congestion is detected. And the aggressive nature of them
results in unwanted packets loss and queuing at bottleneck
routers. Existing studies also show that end-to-end feedbacks
are difficult to achieve the high link utilization and fairness
while maintaining the low bottleneck queue size and the near-
zero packet loss rate. Hence, the router-assisted feedbacks are
required to break through the limitations of ECCs.

The NCCs utilize the link load [11] [12] [13], fair share
rate [10] [30], or changes in window size [9] to adjust
the congestion window and can be subdivided into load-
based congestion control (LCC) and rate-based congestion
control (RCC). The advantages include that they can rapidly
achieve the efficient (e.g. full link utilization, fast convergence,
stability) and fair bandwidth allocation among different flows

in HBDP networks. In terms of RCC schemes, Falk et al. [9]
generalized the ECN proposal and introduced the concept of
decoupling the utilization control and the fairness control. To
achieve the fair share of bottleneck bandwidth and finish flows
quickly, Dukkipati [10] proposed a faster congestion control
scheme based on the fair share rate. As mentioned in section
1, two deployment problems make RCC schemes difficult to
be used on current Internet.

Differ from RCC schemes, LCC schemes measure the link
load and use the ECN fields [14] [15] in the IP header to
convey the encoded link load. The advantage of LCC is that it
doesn’t need to modify the IP header and is compatible with
the current network architecture. TCP+RED/ECN [20] [23]
uses two ECN bits to notify senders whether the network is
congested or not. It makes TCP able to reduce the packet loss
rate and the queue length. However, due to the binary indicator,
senders cut cwnd by half, which is too aggressive in HBDP
networks, when a ECN-marked ACK packet arrives. In [11],
Xia et al. proposed a simple, low-complexity protocol which
leverages only the existing ECN bits for network congestion
feedback, and yet achieves comparable performance (e.g. high
utilization, negligible packet loss, low persistent queue length,
and reasonable fairness) to XCP [9]. However, due to up to two
bits resolution, the convergence speed of VCP is significantly
slower than that of XCP. In [12], Qazi et al. uses experimental
and theoretical analyses to prove that the convergence speed
improves significantly when the load is estimated to 4 bits
resolution. But the IP header of a single packet has insufficient
space. Hence, the Adaptive Deterministic Packet Marking
(ADPM) [31] was adopted to obtain 16 bits high-resolution
congestion estimation in [13]. Recently, Wang et al. [16]
proposed a bandwidth estimation based VCP scheme that can
provide more accurate network state information by estimating
available bandwidth with an adaptive bandwidth estimator.

III. MOTIVATION

In LFCC, VCP is a seminal scheme and inherits from the
standard TCP (Reno). Specifically, a VCP router measures and
encodes the LF (ρl) values of its output links periodically (tρ).
When a packet leaves the VCP router, the encoded LF value
is inserted into ECN fields of the packet’s IP header. A VCP
receiver is similar to the standard TCP receiver except the
transfer of ECN values from data packets to acknowledgement
(ACK) packets. Using the LF value, a VCP sender can employ
different strategies to control cwnd as listed in Table I.
Roughly, the VCP sender inflates cwnd using MI and AI
strategies when the link load is in the low-load and high-
load regions, respectively. In the over-load region, the VCP
sender deflates cwnd using the MD strategy immediately and
then freezes cwnd for one tρ (200ms in the implementation
of VCP) regardless of the remaining feedbacks.

Using the following equation, the VCP router can estimate
ρl [11]

ρl =
λl + κq · q̄l
ξl · Cl · tρ

, (1)



TABLE I
ECN MARKING AND CONGESTION WINDOW ADJUSTMENT OF VCP

Load Region ECN Action
Low-load (0 ≤ ρl < 0.8) (01)2 MI: cwnd← cwnd · (1 + α)
High-load (0.8 ≤ ρl < 1.0) (10)2 AI: cwnd← cwnd+ β
Overload (ρl ≥ 1.0) (11)2 MD: cwnd← cwnd · γ

where λl and q̄l are the total input traffic (using a packet
counter) and the average queue length of VCP router observed
in tρ, respectively. κq is a coefficient to control the draining
speed of the queue backlog and is fixed to 0.5 in [11]. The
larger κq means the faster speed to drain the persistent queue
backlog. ξl denotes the target link utilization (e.g. 0.98), and
Cl denotes the link capacity. To measure q̄l, VCP adopts a
low-pass filter to sample the instantaneous queue length, q(t),
every tq (e.g. 10ms). To eliminate the RTT unfairness, VCP
scales α and β according to the current RTT, rtt, as

αs = (1 + α)
rtt
tρ − 1, (2)

βs = β · (rtt
tρ

)2. (3)

Problem 1: In the low-load region, VCP adopts a conserva-
tive MI factor (α=0.0625), which is even lower than the slow
start (SS) of standard TCP, to adjust cwnd. This results in the
slow increasing of cwnd to achieve the high link utilization.
The reason is that, to avoid the overflow of the bottleneck
queue, VCP senders always regard ρl as 0.8 when the ECN
value is (01)2 while the real ρl varies in [0, 0.8). Suppose
that the bandwidth of the bottleneck link is 100Mbps and the
round-trip propagation delay (RTPD) is 80 ms, a VCP flow
needs 21s or so to achieve the high link utilization as shown
in Fig. 1. The slow convergence speed is also the root cause
of the long FCT of short flows.

Problem 2: To achieve the intra-flows fairness, VCP adopts
the modified AIMD mechanism to adjust cwnd according
to the synchronized feedbacks (the identical feedback for
different flows). Balancing the responsiveness and the overall

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  50  100  150  200  250  300  350  400

C
o

n
g

es
ti

o
n

 W
in

d
o

w
 (

p
k

ts
)

Time (s)

flow 1
flow 2

Fig. 1. The evolution of the congestion window of VCP flows

TABLE II
ECN MARKING AND CONGESTION WINDOW ADJUSTMENT OF HFCC

Load Region Flow Rate ECN Action
Low-load(0 ≤ ρl < 0.8) - (01)2 RI
High-load(0.8 ≤ ρl < Uth) - (10)2 A2I
High-load(Uth ≤ ρl < 1.0) ri ≤ rf (10)2 A2I
High-load(Uth ≤ ρl < 1.0) ri > rf (11)2 AMD
Overload(ρl ≥ 1.0) - (11)2 AMD

link utilization, VCP fixes the MD factor to 0.875. This
setting makes new flows having less chances to achieve the
fair bandwidth allocation quickly in the high-load or overload
regions. It also results in the long FCT of later-coming flows
indirectly. Fig. 1 shows that the second flow starts at 50s after
the first flow has entered its steady state (ρl > 0.8). Until 225s
or so, the two flows get intra-flows fairness. In other words,
the convergence speed in obtaining fairness is very slow.

To address these issues, Qazi et al. proposed two enhanced
protocols in [12] [13] using high-resolution feedbacks. How-
ever, the feedbacks of them are probabilistic and can not reflect
the network condition timely. In [16], Wang et al. proposed
the bandwidth estimation based VCP (VCP-BE). Using the
available bandwidth to judge the network state, VCP-BE can
adjust cwnd more precisely than VCP. But the inaccuracy of
bandwidth estimation may cause the throughput fluctuation
of VCP-BE flows. To improve the performance while main-
taining the applicability of VCP, we need a novel mechanism
which generates different congestion feedbacks according to
the network condition and the partial flow states. Hence, a
congestion control scheme, named HFCC, is proposed based
on the overlay coding of SF and LF to achieve above goals.

IV. HFCC PROTOCOL

In this section, we provide an overview of HFCC firstly. And
then we introduce the estimation of the link load, flow rate, and
available bandwidth. After that, the implementation of HFCC
is presented. Finally, serveal key parameters are discussed.

A. HFCC Overview

In HFCC, the sender adjusts cwnd adaptively according to
the overlay coding of LF and SF. The detailed information
is shown in Table II and explained as follows. In low-load
region, HFCC adopts the rapid increase (RI) to adjust cwnd,
which can achieve the high link utilization rapidly and avoid
unwanted packet losses. In high-load region, HFCC adopts
the adaptive AI (A2I) and adaptive MD (AMD), which is
dominated by the SF value, to accelerate the convergence of
intra-flow fairness. In overload region, HFCC uses AMD to
reduce cwnd reasonably. Note that HFCC employs a similar
method like [17] to adjust the AMD factor, γ. ri is the rate
of ith flow and rf is the fair-share rate of the bottleneck link.
Uth is a threshold to balance the efficiency and fairness.

To illustrate the operation of HFCC, a network scenario is
provided in Fig. 2. It has three components: HFCC sender,
HFCC receiver, and HFCC router. Two ECN bits, indicated
by different blocks, are adopted to convey the overlay coding
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Fig. 2. The operation of HFCC with identical link load and different flows
rate

of LF and SF. Therein, the dark-grey block indicates that
the bottleneck link is either in low-load region (0) or high-
load and overload regions (1). The light-grey block represents
whether the flow rate (e.g. ri) is lower than the fair share
(e.g. rf ) of the bottleneck bandwidth (0) or not (1) when the
link load is in high-load region. In addition, the light-grey
block is always 1 when the link load is in overload region.
When packets leave the HFCC sender, their ECN bits in the
IP header are initialized to (01)2 ((00)2 for the backward
compatibility). Passing the link between the HFCC sender and
R1, packets arrive at R1 where several related variables are
updated. When packets leave R1, their ECN fields are updated
to (10)2 because the link load is in high-load region and
ri ≤ rf . However, due to the high-load of the R2’s output
link and ri > rf , the ECN bits of packets are updated to
(11)2 when they leave R2. When packets are accepted by
the HFCC receiver, the corresponding ACK packets, whose
ECN bits in the TCP header are the same as the accepted data
packets, are send back to the HFCC sender. Thus, the HFCC
sender can adjust cwnd according to ECN bits. In addition,
the HFCC router can regain LF and SF values agilely when
the link capacity, the flows RTT, the queue backlog, and the
flow rate change dynamically. The HFCC sender can adjust
cwnd and other parameters adaptively.

The key goal of HFCC is to achieve the faster convergence
of efficiency and fairness than other LFCCs when the link
load is in high-load region. If the link load is in high-load
region, high-bandwidth flows must decrease their sending
rate positively while low-bandwidth flows can increase their
sending rate gracefully. In addition, the high-bandwidth and
low-bandwidth flows can increase their sending rate when the
link load is in low-load region and must decrease their sending
rate when the load of the bottleneck link is in over-load
region. To improve the performance of short flows, we adopt
the similar method like [19] [16] to estimate the available
bandwidth and then adjust cwnd of HFCC flows when the
link load is in low-load region.

B. Network State Estimation

To support HFCC, the network state estimation is necessary.
Next, we will introduce three methods to estimate the link
load, flow rate, and available bandwidth.

1) Link Load Estimation: To realize the low persistent
queue length, the high link utilization and intra-flow fairness,
HFCC adopts the similar method like [11] to compute the link
load. The HFCC router divides time into intervals with length
tρ (e.g. 200ms) and computes the link load in each interval as
equation (1). After that, the HFCC router generates LF based
on the computed link load (ρl) and updates the dark-grey block
in Fig. 2 when packets leave the router. As an extension, we

can also adopt some active queue management algorithms [20]
to measure LF. Due to space limitations, we leave them for
future study and do not discuss them in this paper.

2) Flow Rate Estimation: To estimate the flow rate and
compute SF, we adopt the similar method like [18]. Next, we
provide the detailed procedure.

In [18], Pan et al. proposed an approximate fair dropping
(AFD) algorithm to achieve the fair bandwidth allocation
among flows. To reduce the spatial complexity, AFD adopts
a shadow buffer and a flow table to estimates the flow rate ri
and the fair share rate rfair. Therein, the shadow buffer can
be used to sampling incoming packets. The flow table contains
the packet count of different flows. ri is estimated by mi (the
amount of traffic from ith flow during an interval). rfair is
estimated dynamically by mfair, which is determined by

mfair ← mfair + ν · (Qpre−Qtarget)−% · (Qcur−Qtarget),
(4)

where Qcur is the instantaneous queue length in current
interval. Qpre is the queue length in previous interval. Qtarget
is the target queue length. ν and % are two configurable
coefficients. If ri < rfair, the SF is 0. Otherwise, it equals
1. In implementation, mi can be calculated through the expo-
nentially weighted moving average method. Therefore, mf of
u flows can be denoted as 1

u

∑u
i=1mi.

We can also use an approximate method, e.g. sample-
match in [21] [22], to estimate SF. When a packet leaves
the HFCC router, it makes a comparison among the dequeued
packet and n randomly selected packets from the router’s
queue. If they belong to the same flow, the SF equals 1.
Otherwise, it equals 0. Therein, n is a user-defined parameter.

3) Available Bandwidth Estimation: Like [19], HFCC esti-
mates the available bandwidth at sender by observing returning
ACKs. In [19], the available bandwidth estimator is as follows

Bn =
RTT ·Bn−1 + Ln

(tn − tn−1) +RTT
, (5)

where Bn is the estimated available bandwidth at time tn when
nth ACK arrives. Ln is the acknowledged data size of nth
ACK. RTT is the estimated round-trip time of TCP packet at
time tn. To balance the responsiveness and accuracy of the
bandwidth estimator, a dynamic coefficient, πn, is introduced
to control the length of observation time. Hence, the equation
(5) can be rewritten to

Bn =
πn ·RTT ·Bn−1 + Ln
πn ·RTT + (tn − tn−1)

, (6)

where πn can be calculated by

πn =
Bn−1

(cwndn−1 · Ps)/RTT
, (7)

where cwndn−1 is previous congestion window. Ps is the
packet size. Note that HFCC uses the estimated bandwidth
to adjust the congestion window when the bottleneck link is
in low-load region.



C. Implementation of HFCC

In section IV-B, we have discussed how to estimate the
network state. Next, we explain the implementation of HFCC.

1) Sender: To adjust cwnd, the HFCC sender employs the
RI-A2I-AMD, which determined by two ECN bits of received
ACK packets. To facilitate discussions, suppose that all flows
share a single bottleneck link and the RTT of all flows equals
tρ. Therefore, the control interval synchronizes with the load
computation. At any time t, when the ECN values is (01)2,
the HFCC sender increases cwnd rapidly as

cwnd← max

[
cwnd+ cwnd · αs,

RTTmin ·Bn
Ps

]
, (8)

where αs is calculated by equation (2). α in αs is the increased
ratio of cwnd in one RTT inherited from the MI stage of [11]
and its default value is 0.0625. RTTmin is the minimum RTT
observed by sender. When the ECN values is (10)2, cwnd is
increasing linearly by

cwnd← cwnd+ βs/cwnd, (9)

where βs is calculated by equation (3). β in βs is the increased
value of cwnd in one RTT and its default value is 1.0. When
the ECN bits is (11)2, the HFCC sender decrease cwnd
prudently by

cwnd← max(1.0, γ · cwnd), (10)

where γ is the decreased ratio of cwnd in one RTT. Note that
cwnd must be frozen by one RTT after the AMD action. In
section IV-D, we will discuss how to set β and γ.

2) Router: The structure of HFCC router is shown in Fig.
3 and has four components. Therein, the Load Computation
adopts the same method as [11] to compute LF of the router’s
output links periodically. The Packet Queue holds packets that
can not be timely forwarded. The Rate Estimation uses the
similar methods as [18] to estimate SF. As a matter of fact,
the flow table is a good choice to compute SF in some novel
network architectures, such as software-defined network. The
Packet Marking adopts the overlay coding method to encode
LF and SF, and then updates two ECN bits in IP header of
data packets when they leave the router.

The detailed operation of HFCC router is shown in algo-
rithm 1. Therein, lf and sf are LF and SF respectively. ECN
means two ECN bits in IP header. Note that, to protect ACK
packets, the HFCC router has two priority queues. The high
priority queue is for ACK packets and the low priority queue is
for other packets. As an alternative, we can adopt the method
like [24] to achieve the weighted fairness.
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Fig. 3. The structure of a HFCC-enabled router

3) Receiver: The function of the HFCC receiver is similar
to the Reno receiver except that two ECN bits must be copied
from data packets to ACK packets.

D. Parameters Setting

To strengthen HFCC, we provide the guideline to configure
key parameters including tρ, β, γ and Uth in this section.

Parameter tρ: To eliminate the burstiness of congestion
responses, HFCC should keep tρ greater than most RTTs.
Meanwhile, to avoid the queue backlog, HFCC should keep
tρ as small as possible. In VCP [11], tρ is 200ms. But the
experimental analysis shows that the fixed tρ is ill-suited when
RTT is too large or the link bandwidth is too small. To ensure
the performance, HFCC adopts a similar method like [12] to
update tρ. The detailed procedure is as follows.

(1)Suppose that the control interval T=10ms and the RTT
estimation in ith packet is rtti. The number of packets in T
is nT . Hence, the HFCC router estimates the average RTT,
RTTT , smoothly in T by

RTTT =
1

nT

nT∑
i=1

rtti. (11)

(2)Using RTTT and its previous smoothing estimation
RTTd, the HFCC router computes the current smoothing
gain θ. If RTTT ≥ RTTd, θ = T/RTTd. Otherwise,
θ = T ·RTTT /(φ ·RTTd). In [12], φ = 50.

(3)According to θ in (2), the HFCC router computes the new
RTTd and then updates tρ using the new RTTd. Specifically,
RTTd should be firstly calculated by

RTTd = RTTd + θ · (RTTT −RTTd). (12)

If RTTd < 1400, tρ = min∀i∈|S|
{
si|si ∈ S, si ≥ RTTd

}
.

Otherwise, tρ = 1400. Therein, S={80, 200, 400, 600, 800,
1000, 1200, 1400}. Note that when RTT lies in [2.0, 2.5] times
of tρ, the queue backlog is avoidable.

Algorithm 1 Overlay Coding of LF and SF
1: compute lf using equation (1);
2: estimate sf like section IV-B2;
3: if lf not in [0.8, 1.0] then
4: if lf in [0, 0.8] then
5: ecn = (01)2;
6: else
7: ecn = (11)2;
8: end if
9: else

10: if sf equals to 1 then
11: ecn = (11)2;
12: else
13: ecn = (10)2;
14: end if
15: end if
16: if ECN < ecn then
17: ECN = ecn;
18: end if



Parameter β: Intuitively, more residual bandwidth needs
a larger β. To avoid unnecessary packets loss, β should be
limited to a fixed range. To identify the range, we conduct
different experiments with different β values. The results show
that HFCC can obtain better performance when β varies in [1,
5]. Using the estimated available bandwidth, HFCC can tune
the β value adaptively as follows.

β = max

[
1,

Bn −Bmin
Bmax −Bmin

· βmax
]
, (13)

where Bn is nth estimated available bandwidth. Bmax and
Bmin are the global maximum and minimum values of Bn.
βmax is a upper bound of β. As shown in equation (13), the
larger available bandwidth means a larger β. It can accelerate
the convergence speed of HFCC.

Parameter γ: To balance the convergence speed of the fair-
ness and link utilization. HFCC uses the similar method like
[17] to estimate the congestion degree (cl) of the bottleneck
link and then tune γ as follows.

γ = γmax − cl · (γmax − γmin), (14)

where cl is in [0, 1]. γmin and γmax are the upper bound
and lower bound of γ. In this paper, γmin = 0.675 and
γmax = 0.875. Actually, equation (14) has two merits. Firstly,
the frequent overload indicates that the network congestion is
forthcoming. To avoid the network congestion, cwnd should
be reduced (large γ). Secondly, cwnd of high-bandwidth
flows (large γ) should be reduced. More available bandwidth
should be provided to low-bandwidth flows (small γ). The
experimental results show that the adaptive γ can improve the
performance of HFCC. Due to the space limitation, the results
are not listed here.

Parameter Uth: In HFCC, Uth is adopted when the link
load is in high-load region. To balance the link utilization and
convergence speed, the Uth should be configured properly.
If Uth is too small, the convergence speed of fairness will
accelerate. But it also results in the lower link utilization,
especially in high BDP networks. In this paper, we set Uth
according to the output link capacity dynamically.

V. PERFORMANCE EVALUATION

To evaluate HFCC, we conduct several experiments using
the packet-level simulator ns-2 [25], which has been extended
with HFCC and integrated with other LFCC protocols includ-
ing VCP, MLCP and BMCC. We focus on the comparison
between HFCC and other protocols including TCP Reno, TCP
SACK, CUBIC [4], CTCP [7], VCP [11], MLCP [12], BMCC
[13] in this paper. Therein, TCP Reno is a standard TCP
and widely employed in most operating systems. CUBIC and
CTCP are default transport protocols in the latest Linux and
Windows operating systems, respectively. The parameters of
all compared protocols are the default values of ns-2 or optimal
values of original papers. And the key parameters of HFCC
are tuned automatically according to the network states.

To obtain the fair support from routers, TCP Reno, TCP
SACK, CUBIC, and CTCP are always employed in conjunc-
tion with the ECN-enabled RED [23]. Unless other statements,

the bottleneck queue limit is one BDP, or two packets per-flow,
whichever is larger. The size of data packets is 1000 bytes,
while the size of ACK packets is 40 bytes. To prove HFCC,
we consider the convergence, average FCT, robustness, etc. in
different scenarios. All experiments last at least 200s and the
data in the first ten seconds are ignored.

A. Single Bottleneck

In this topology, all flows, which are generated by HFCC
or other compared protocols, share the same bottleneck link.
The default values of the bottleneck bandwidth and RTPD are
150 Mbps and 80 ms respectively.

1) Convergence: HFCC inherits from VCP and has the
better convergence in efficiency and fairness. Differ from
existing protocols, HFCC can achieve the rapid convergence
of the efficiency and fairness because of the RI phase, hybrid
feedback and self-adaptive parameters.

Converges to Efficiency: Different from VCP, MLCP and
BMCC, HFCC possesses the RI phase and uses the available
bandwidth estimation to accelerate the occupation of residual
bandwidth in low-load region. Theoretically, the bandwidth
estimator requires a few RTTs to measure the available band-
width of bottleneck links and achieve the rapid increase of
cwnd. In practice, considering the stability and accuracy, the
observation interval (constant) of the bandwidth estimator is
relatively longer. In HFCC, we employ an adaptive method to
adjust it dynamically and the low bound should not too large,
which may affect the convergence speed of the efficiency.

To illustrate the convergence speed of the efficiency of
HFCC, we conduct an experiment with two long-lived flows.
The compared protocols include VCP, MLCP and BMCC. And
tρ, β, γ and Uth are all adaptive as explained above. We collect
the result data of the first 40 seconds. As shown in Fig. 4(a),
the convergence speed of the efficiency of HFCC is close to
that of MLCP and BMCC and faster than that of VCP.

Converges to Fairness: The synchronized feedbacks of
previous LFCCs result in the sluggish convergence of intra-
flow fairness. Unlike previous LFCCs, HFCC has the faster
convergence because of hybrid feedbacks. Low-bandwidth
flows have fewer MD phases while high-bandwidth flows
would undergo more MD action. Using the same setting as
previous, we conduct an experiment and collect the result data
after 40 seconds. As can be seen from Fig. 4(b), HFCC has the

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  5  10  15  20  25  30  35  40

C
o

n
g

es
ti

o
n

 W
in

d
o

w
 (

p
k

ts
)

Time (s)

VCP
MLCP
BMCC
HFCC

(a) Efficiency

 0

 200

 400

 600

 800

 1000

 1200

 1400

 40  60  80  100  120  140  160  180  200

C
o

n
g

es
ti

o
n

 W
in

d
o

w
 (

p
k

ts
)

Time (s)

VCP 1
VCP 2

MLCP 1
MLCP 2
BMCC 1
BMCC 2
HFCC 1
HFCC 2

(b) Fairness

Fig. 4. The convergence speed of different LFCC protocols
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Fig. 5. The average FCT of different LFCC protocols

faster convergence of intra-flow fairness than other protocols
when a flow starts at 50 second. The inversely-proportional
increase of MLCP makes it become the worst one.

2) Flow Completion Time: To investigate the FCT of
LFCCs under different flow size, we conduct an experiment
with the flow num 100. The flow size obeys the pareto distribu-
tion, where the mean value varies in [30, 30000] packets (1000
bytes per packet) and the shape equals to 1.2. In addition,
the arrival time of flows obeys the poisson distribution. As
shown in Fig. 5, HFCC has the minimal average FCT and is
slightly better than BMCC. Compared with VCP and MLCP,
the average FCT is reduced by 40% and 36% respectively
when the flow size is 30000 packets. The results indicates
that HFCC is better for delay-sensitive applications.

3) Impact of Buffer Size: To analyze the influence of
the router buffer, we evaluate different protocols when the
bottleneck queue limit varies in [0.2, 2.0] BDP. The forward
and reverse paths have 10 FTP flows respectively. As shown in
Fig. 6, the performance of HFCC is similar to that of MLCP
and BMCC and better than that of VCP and other TCPs.

4) Sudden Demand Changes: We also analyze the robust-
ness of different protocols when the number of flows changes
suddenly. In this experiment, five long-lived flows start at 0.1
s and stop at 300 s. One hundred flows start at 100 s and stop
at 200 s. The parameters are default values. Fig. 7 shows that
HFCC can adjust cwnd agilely and ensure the high utilization
of bottleneck link when the burstiness occurs.

B. Multiple Bottlenecks

To evaluate HFCC in the multi-bottleneck scenario, we
build a topology with seven bottleneck links. The capacity
and propagation delay of bottleneck links are 150 Mbps and
20 ms respectively. There are five long-lived flows sharing the
bottleneck links in forward and reverse directions. In addition,
each bottleneck link has five interfering FTP flows in the
forward direction. The RTPD of long-lived, FTP flows is 360
ms, and the RTPD of interfering flows is 60 ms. The results
in Fig. 8 indicates that HFCC is better than other protocols.

VI. CONCLUSION

This paper proposes a high-efficiency LFCC protocol,
HFCC, based on hybrid feedbacks in HBDP networks. Using
the overlay coding and asynchronous feedbacks, HFCC can
regulate cwnd agilely and improve the convergence speed
of the efficiency and intra-flow fairness while keeping the
advantages of LFCCs. Furthermore, to reduce the average
FCT of short flows, HFCC adopts an bandwidth estimator to
accelerate the convergence of the MI stage of VCP. Adopting
the simulator ns-2, we have proven the viability and validity
of HFCC. Furthermore, due to the ECN-enabled IPv6 stack,
HFCC can be easily applied into the IPv6 network.

As a future work, we will investigate the relationship
between parameters and the performance of HFCC and then
optimize parameters, which are suitable to a wide range
network conditions, to achieve optimal performances.
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Fig. 6. The buffer size varying from 0.2 BDP to 2.0 BDP
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