
Nuwa: A Receiver-driven Congestion Control
Framework to Achieve High-throughput and

Controlled Delay over Dynamic Wireless Networks
Guanghui Gong, Xianliang Jiang, Yi Xie, Guang Jin, Jianan Zhang, Haiming Chen

Ningbo University
Ningbo, Zhejiang, China

{2011082292, jiangxianliang}@nbu.edu.cn

Abstract—In recent years, wireless networks and applications
have grown by leaps and bounds, and are converging over a wide
range of scenarios. An increasing number of applications require
wireless networks that enable high throughput and low latency.
However, due to the attenuated propagation of wireless signals,
bandwidth change rapidly in a short period. TCP fails to perform
well in such an environment and can suffer from low network
link utilization and high latency. To solve above problems, this
paper proposes a receiver-driven congestion control framework,
named Nuwa. Nuwa decouples the congestion avoidance phase of
sender-side congestion control and implements it on the receiver
side. In addition, Nuwa uses one-way delay to detect network
congestion and controls the sending rate of senders through the
receive window field in the packet header. We confirm that the
throughput degradation caused by network flips can be mitigated
by Nuwa. And the throughput of data transmission can be
further improved by the design of the receiver’s algorithm. The
evaluation results show that Nuwa improves the throughput of
TCP stream by 10%-23% in most cases and reduces the queuing
delay by 29% on average.

Index Terms—TCP, receiver-side, congestion control

I. INTRODUCTION

With the deployment of state-of-the-art network architec-
tures (e.g., 5G cellular networks), the link capacity of net-
works has been significantly increased [1]. At the same time,
Internet-related industries (such as Internet accelerated speed,
the integration of new-generation information technology and
manufacturing technology in ”Made in China 2025”, large-
scale 5G infrastructure, and Tiansuan Constellation), and the
rise of the metaverse, making high demands on users for
wireless networks. Achieve high throughput and low latency
of data transmission in wireless networks is crucial for the new
technologies. However, existing wireless network architectures
are inadequate to handle large amounts of data transmission,
which can cause serious network congestion problems and
degradation of throughput. [2].

Congestion control is critical to TCP data transmission
and the primary solution to network congestion. The purpose
of congestion control is to match the transmission rate of
packets to the available bottleneck bandwidth in the wide-area
network. Previously, congestion control mainly used packet
delivery rates in the network to infer the channel capacity
of wireless networks. Unfortunately, these methods are only
effective in specific scenarios, which leads to the fact that

traditional congestion control algorithms cannot achieve high
throughput and low latency under wireless networks.

For wireless networks, the last hop is most likely to be
the bottleneck for data transmission. In particular, the advent
of Content Delivery Network (CDN) technology has enabled
content providers to place their resources on operators’ servers
to reduce latency and improve the quality of user experience
[3]. This makes data transmission performance dependent on
the calculation of last-hop network bandwidth.

However, the vulnerability of wireless transmission to en-
vironmental influences causes its bandwidth to be always
changing. Variations in wireless bandwidth are affected by a
variety of factors (e.g., user location and speed), and anomalies
in network metrics can easily lead to rapid drops in throughput.
Therefore, sending large amounts of data without awareness
of changes in the wireless network may lead to network
congestion. We also found that a control message from the
receiver side can quickly respond to the change on network
state without over-simulating the network. So we propose
Nuwa, a receiver-driven congestion control framework. Nuwa
decouples the Congestion Avoidance (CA) phase of sender-
side congestion control and implements it on the receiver
side. We implemented the first receiver-driven algorithm in
the Nuwa framework. One-way delay is used to detect network
congestion and control the sending rate of sende through the
receive window field in the packet header. Network changes
are sensed by the receiver side to alleviate network congestion
and achieve high throughput and low latency.

We conducted experiments in 5G cellular networks. The
results show that Nuwa can accurately estimate the queuing
delay of wireless networks. With the adjustment of the utility
function, Nuwa can adjust the congestion window in real-
time to occupy fully 100% of the available bandwidth. In
a real wireless network, Nuwa can effectively improve the
performance of data transmission. We set exclusive latency
targets for different network environments, enabling Nuwa to
share bandwidth with various congestion control protocols in
the target network. Specifically, Nuwa can effectively track
bandwidth changes under wireless networks and prevent ad-
ditional retransmissions by adjusting the receive window.

In summary, the main contributions of this paper are as
follow:

• In order to achieve high throughput and low latency, we
develop a Nuwa framework. Nuwa changes the size of the
congestion window by sensing the network bandwidth
through one-way delays. This effectively mitigates the
problems of throughput degradation and packet loss under
wireless networks.

• Nuwa sets different target time delays for each applica-
tion to meet their respective requirements. The setting
of the time delay determines Nuwa’s ability to occupy
bandwidth. Therefore, setting a reasonable target delay
helps Nuwa to get a fair bandwidth. And this approach
also provides a solution to the problem of the delay-based
approach suffers significant throughput degradation when
competing with loss-based algorithms.

The rest of this paper is structured as follows. Section
II presents the related work. In Section III, we present the
background and motivation for the design of the receiver
algorithm. Section IV describes our receiver algorithm in
detail. Section V evaluates the scheme. We conclude in Section
VI.

II. RELATED WORKS

Server-side oriented congestion control protocols: Most
of the data in the network environment is transmitted base
on TCP, so congestion control of TCP has been one of the
research topics of great interest. Congestion control algorithms
are critical to the performance of network data transmission.
Based on different congestion feedback, server-side congestion
control algorithms can be classified into three categories: loss-
based algorithms, delay-based algorithms, and delay-based
combined loss algorithms.

TCP Reno [4], and TCP NewReno [5] were among the early
approaches that were loss-based congestion control algorithms.
HSTCP [6] and CUBIC [7] modify the window growth model
to achieve high network utilization quickly. CUBIC is the
default congestion control algorithm in the Linux kernel.

Delay-based protocols (e.g., TCPVegas [8]) detect network
congestion and adjust cwnd based on RTT, which can react to
network conditions faster than packet-drop-based algorithms.
However, the delay-based approach suffers significant through-
put degradation when competing with loss-based algorithms
such as TCP-Reno.

In addition, CTCP [9] combines delay-based components
into a loss-based TCP congestion avoidance algorithm. TCP
BBR [10] estimates the bottleneck bandwidth and RTT latency
and uses distributed control loops to achieve an optimal
state that exploits the network while adequately maintaining
small queues. Recently, some new algorithms have also been
proposed, such as LEDBAT [11]. However, these mechanisms
are mainly designed for wired networks and are not applicable
to highly variable cellular networks.

Receiver-oriented congestion control protocols: The
receiver-based congestion control algorithm is mainly used to
solve the TCP performance problem by tuning the reception
window. In DRWA [13], the receiver increases rwnd as the
current RTT approaches the minimum RTT, and increases

rwnd as the RTT becomes more extensive, bringing the RTT
closer to its minimum RTT. in DFCSD [15], the application’s
need for high throughput and low latency is addressed by
controlling the cellular network’s RTAC [14] integrates AQM
into the loss-based congestion algorithm and implements it at
the receiver side.

III. MOTIVATION

In this section, we first discuss the development of 5G
wireless network technology. Then the reasons why wireless
networks do not provide satisfactory performance are explored.

A. Base station switching in 5G

Enhanced Mobile Broadband (eMBB) is one of the 5G
application scenarios defined by the International Telecom-
munication Union (ITU). It focuses on the explosive growth
of mobile Internet traffic and provides users with more stable
services in poorer network environments. The 5G performance
metrics under eMBB are more diverse to supply the demands
of different application scenarios. Peak rates of 10-20 Gbit/s
are expected to be needed for 5G to accommodate data
transmissions such as HD video and virtual reality. And air
interface latency is as low as 1ms to accommodate real-time
applications such as autonomous driving and telemedicine.
However, the limited coverage of wireless technology allows
5G and other wireless communication technologies still have
performance issues, such as reduced throughput during base
station switching.

To address these issues, 5G technology proposes Dual
Active Protocol Stack Switching (DAPS). The emergence of
DAPS mainly solves the communication interruption problem
during switching. In 4G networks, when a UE switches to
connect to a base station, it disconnects from the old base
station before connecting to the new one, which causes a
link disruption of about 200ms. DAPS adopts a new base
station switching method, which will maintain the link and
data communication with the old base station before switching
to the new one, thus solving the problem of communication
interruption during base station switching.

Base station switching is the result of the combined effect
of various factors (e.g., signal fading, surge of connected
users). DAPS is proposed to solve the problem of throughput
degradation during base station switching. However, when the
base station switching is caused by signal quality degradation,
the throughput of data transmission is also reduced. It is
because the quality of 5G channel is varied with the different
equipment locations. And data cannot be adjusted timely by
the congestion control algorithm due to the rapid change
of network. Therefore, we propose to focus the problem on
how to address the impact of signal quality changes on data
transmission in wireless networks. In the next subsection, we
will discuss the impact of network signal quality fluctuations
on data transmission and present the possibility of using
receiver solutions to solve the problem.

0 10 20 30 40 50 60 700

100

200

Ba
nd

wi
dt

h(
M

bp
s)

CUBIC

0 10 20 30 40 50 60 70 80
Testing points

0

20

40

0

0

Ru
n

Le
ng

th

(a) Trace in CUBIC

0 10 20 30 40 50 60 70 800

100

200

300

Ba
nd

wi
dt

h(
M

bp
s)

BBR

0 10 20 30 40 50 60 70 80
Testing points

0

20

40

60Ru
n

Le
ng

th

(b) Trace in BBR

Fig. 1. The relationship between network fluctuations and base station switching is detected from the collected bandwidth variations. The trace is segmented
using a Bayesian online change point detection technique. The bottom plot shows the current run length (or count of monitored points since the last change
point) for each point in the network trace. Run lengths are reset when there are significant changes in the trace.

B. Limitations of TCP in 5G scenario

This subsection exposes the problem of TCP and mobile
wireless networks through file download experiments. The
experimental topology used in our experiments is shown in
Figure 2. The user equipment (UE) is connected to a 5G
base station through a wireless mobile radio network. The
base station network is connected to the WAN through an
associated node. The server is deployed in the cloud with
a base bandwidth of 5 Mbps. The UE downloads files from
the server located on the wired side, and the cloud files are
large enough to accommodate 80 seconds of file downloads.
The default buffer size of the base station is 50 packets. Our
experiments were conducted on a sealed road with six base
stations deployed around this road. The tester is constantly
moving on the road to cause multiple base station switching
in a short period of time.

Server

Base StationUE

Internet

Fig. 2. The topology of UE Experiment.

To demonstrate the impact of network bandwidth variation
on data transmission, we count packet loss, bandwidth vari-
ation and base station switching information when network
packets are transmitted under 5G networks. Considering the
impact of congestion control algorithms, we used two classical
congestion control algorithms, BBR and CUIBIC, for compar-
ison. The relationship between network bandwidth variation
and base station switching is experimentally explored.

Oboe [12] is a video block acquisition scheme based on
network state identification that proposes piecewise-stationary
model for network throughput. Oboe shows that the traces
of network throughput can be segmented into pieces of time
stationary series and uses them for network state modeling.
We use this scheme for the analysis of wireless network
performance. Meanwhile, we use the Bayesian change point
detection from Oboe to analyze the traces of bandwidth.

As shown in Figure 1, we show the split of the throughput
traces for the CUBIC and BBR. The top half of the image
shows the bandwidth variation, and the red line indicates the
base station switching. The bottom half of the image shows
the run length from the last change point, where the values
represent the number of monitoring points. The results show
that the trace under the wireless network is a non-smooth
segmented trajectory. There is a positive correlation between
the switching of the base station and the throughput. However,
different results are found in the trace of the BBR algorithm.
In Figure 1(b), the effect of BBR is not significant during the
third and fourth base station switching.

We believe that network fluctuations become the main
factor affecting data transmission under 5G networks. Data
transmission is related to algorithms, and the impact of signal
quality is more significant for algorithms based on packet loss,
such as the CUBIC. Meanwhile, BBR can better handle the
throughput degradation in some specific situations. So, we
believe that the algorithm improvement can effectively avoid
the data transmission fading problem in 5G era.

IV. THE PROPOSED NUWA ALGORITHM

This section discusses the problem of adapting the receive
window in the current Linux kernel, and discusses the feasi-
bility of the Nowa.

A. RWND Adjustment in Linux Kernel
The receive window in the TCP protocol is designed to

control the sending rate of data to prevent it from exceeding
the limited buffer space of the receiver. It reflects the amount
of data that the receiver can handle so that the sender will not
send packets more than receiver can accommodate. This is
also known as TCP flow control, and it is different from TCP
congestion control, whose goal is to prevent network overload.
The transmit window of the network is subject to the effect of
the receive window and the congestion window, the transmit
window is the minimum of them.

With the development of storage technology, it is common
for mobile devices to be loaded with large caches. Therefore,
the current cache space at the receiving side is not a bottleneck
for the data transmission. To improve the efficiency of the
transmission, a technique for automatic adjustment of the
receive buffer, dynamic adjustment (DRS) [16], has been
proposed. In DRS, by dynamically adjusting the size of the
receive buffer to fit the requirements of the connection, DRS
estimates the size of the sender’s send window in each RTT
and then sets the local receive window to twice than the
send window. This prevents TCP data transfers from becoming
smaller due to receive window limitations.

Linux has integrated DRS into the kernel since 2.4.27 and
uses this technology as a receive buffer auto-tuning scheme.
With the continuous upgrading of the Linux kernel, the receive
window and receive buffer size are now dynamically resized
most of the time. However, this adjustment is unidirectional:
DRS increases the receive window only when it is possible to
limit the growth of the congestion window [13].

B. Nuwa Design
Network flips cause a drop in throughput during transmis-

sion because the Linux kernel does not use an appropriate
policy for congestion windows. So, in order to make the
change of congestion window consistent with the user network
state, we propose a receiver-driven congestion control based
framework, named Nuwa. The architecture of Nuwa’s design
is shown in Fig. 3, which consists of two main parts: 1-
Receiver part and 2- Sender part. The receiver part mainly
includes Queue Detector, Fitting Trend, and Action Enforce,
where the receiver part of the algorithm can be replaced by the
dynamic loading module of the kernel. The sender part uses
the ack header information to assign a value to the congestion
window. We discuss the algorithm in the context of a typical
wireless access network-based scenario, where users connect
to the Internet over a 5G network.

Nuwa calculates the one-way queue delay of a link in Queue
Detector. The one-way queue delay indicates the congestion
in the link, which allows Nuwa to get a sense of the network.
Since this value is not directly available, we use Eq. 1 to
calculate the one-way queuing delay.

Dc = (St − Sm)− (Rt −Rm) (1)

Where St is the current packet send time (value of times-
tamp), Rt is the current packet receive the time. Sm and Rm

Application

Set Target Get Statistics

Rwnd

Queue Detector

Fitting Trend

Action Enforce

Net Statistics SenderKernel

Cwnd←Rwnd

Fig. 3. A picture of Nuwa’s design.

are the send time and receive time of the packet with minimum
one-way delay (receive time minus send time) in the sliding
window respectively.Dc is used to ensure that the algorithm
has an accurate picture of the state of the network. We use
Kalman Filter to process Dc to remove noise and interference
from the data.

After sensing network change, Nuwa uses Fitting Trend to
perform calculations on the trend of the window changes. In
Nuwa, we set different target optimized delay Td for different
applications to achieve better data transmission. Thus, Td-
Dc represents the direction of the window change and the
magnitude of the adjustment.

To improve the flexibility of the algorithm to network
changes, we use the tanh function to calculate the size of
rwnd, and we set θ to tanh(x). In which, we use x = Td−Dc

ρ
as the input to tanh. ρ is the sensitivity coefficient of the
queuing delay fluctuation, which is used to map the experi-
mental network variation into the tanh function to represent
the network variation. The tanh equation is shown in Eq. 2,
and the trend of tanh is shown in Fig. 4. When x gets closer
to 0, the function changes by a larger amount. Therefore, when
the network fluctuates, tanh can quickly change the window.

tanh(x) =
(
ex − e−x

)
/
(
ex + e−x

)
(2)

-10 -5 0 5 10

-1.0

-0.5

0.5

1.0Tanh

Fig. 4. The change of tanh function.

Finally, we determine the size of the final rwnd in the Action
Enforce module, and the formula is shown in Eq. 3.

wnew ← wold + (θ · k)/wold (3)

Where k is the window tuning aggressiveness parameter,
which is used to modify the magnitude of the adjustment to
the window. The last window size is the wold. We use wold
as a parameter so that the window does not change too much
in a single adjustment.

C. Nuwa Algorithm

Algorithm 1 The Nuwa Algorithm
1: initial :
2: Td ← 0, Sm ← 500 (ms), Rm ← 0;
3: Delaymin ← a large value;
4: ρ ← a suitable value
5: for each ACK do
6: St ← Timestamp of packet delivery;
7: Rt ← Timestamp of packet receive;
8: Dc = (St − Sm)− (Rt −Rm)
9: if Delaymin = 0||Dc < Delaymin then

10: Sm ← St
11: Rm ← Rt
12: Delaymin ← Dc

13: end if
14: x ← Td−Dc

ρ

15: θ ← tanh(x)
16: wnew ← wold + (θ · k)/wold
17: end for

The details of the Nuwa algorithm are shown in Algorithm
1. Different systems have different clock frequencies, so we
use statistics to calculate the current queuing delay. Times-
tamps of the send time and receive time of the currently
received packets are kept by collecting information on each
ack (lines 6-7). Also, we record the send time and receive
time of packets with a small time difference (Lines 9-12).
By default, the smallest timestamp means that there is no
queuing delay or a slight queuing delay exists in the current
link. Finally, the delay of the link is estimated using equation
(1) (Line 8). When Dc is known, we take Td −Dc to indicate
the current adjustment direction the network should take (Line
14) and use equation (3) to adjust the window (Lines 15-16).

These ideas are derived from delay-based congestion control
algorithms but work better for two reasons. First, we designed
Nuwa based on the idea of delay. Nuwa can be independent
of other algorithms in wireless networks because the base
station provides a separate buffer space for each user. In WiFi
or other wireless network environments, Nuwa can maintain
good bandwidth allocation fairness with other algorithms in
natural network environments as long as Td is set reasonably
well. In addition, Nuwa is based on the traditional TCP archi-
tecture, and the traditional congestion control algorithm can
be implemented with minor modifications; we only improve
the congestion control algorithm in the CA phase, which can
effectively avoid the typical throughput degradation during
data transmission.

V. EVALUATION RESULTS

In this section, we compare the Nuwa with other congestion
control algorithms. We first implement our algorithm on the
CUBIC algorithm and compare the algorithm performance in
a simulated environment. In addition, we also compare our
scheme with other algorithms in a real environment.

A. Simulation Environment

Receiver Sender
Cellsim

eth2 eth0 eth1 eth3

Fig. 5. Simulation topology.

In the simulation environment, we use the topology diagram
shown in Fig. 5 for simulation experiments to verify. We use
three sets of computers to build the experimental platform,
Sender and Receiver use the same computer as the server and
client of the experiment, and a desktop computer is used in the
middle of the link as the running environment of Cellsim to
simulate the network. In Cellsim, the traces collected under the
real network are used as the experimental environment. The
trace used is shown in Fig. 6. The trajectory contains mainly
the link changes of the 5G network at two different moments.

0 10 20 30 40 50 60 70 80

Time(s)

0

10

20

30

40

B
an

dW
id

th
(M

bp
s) 5G Trace 1

5G Trace 2

Fig. 6. Simulation Trace.

B. The Adaptive Nature of Nuwa

Firstly, we test the network adaptability of the algorithm. We
judge the algorithm’s adaptability to network changes from
four perspectives: RTT, Throughput, send window variation,
and queue delay. We conducted the experiments on a simulated
experimental platform. For the experimental trace, we chose
5G Trace2 for the experiment, and the image of the trajectory
change is shown in Fig. 6. The trace has a significant amount
of network fluctuation environment. There are two relatively
significant network bandwidth changes around 20 seconds
and 55 seconds, and there are multiple network fluctuations
in the trace between 20 and 55 seconds. On this trace, the
algorithm can better show the adaptability to network changes.
We perform multiple file transfer experiments on this track.

The Nuwa adaptation to network fluctuations is illustrated
in Fig. 7. Due to the variability of network fluctuations, the
packet loss-based algorithm CUBIC does not perform well in
the network. Between 5 and 18 seconds, CUBIC misjudges
the change in network bandwidth, and the congestion window
continues to increase, leading to congestion in the network
due to packet overload. This leads to an increase in RTT
in the network and an increase in queueing delay, ultimately
leading to a decrease in data throughput. In the network with
the Nuwa, the control of the network link and the control of
the network condition at the receiver side is better than the

0 10 20 30 40 50 60 70 80

Time(s)
0

200

400

600

800

1000

1200

1400

C
on

ge
st

io
n

W
in

do
w

 si
ze

With Nuwa
Without Nuwa

(a) Cwnd Size

0 10 20 30 40 50 60 70 80

Time(s)
0

500

1000

1500

2000

2500

RT
T(

m
s)

With Nuwa
Without Nuwa

(b) RTT

0 10 20 30 40 50 60 70 80

Time(s)

0

100

200

300

400

500

600

700

Q
ue

ue
 d

el
ay

(m
s) With Nuwa

Without Nuwa

(c) Queue Delay

0 10 20 30 40 50 60 70 80

Time(s)
0

10

20

30

40

Tu
ro

ug
hp

ut
(M

bp
s)

With Nuwa
Without Nuwa

(d) Throughput

Fig. 7. As Trace changes, Nuwa tracks the changes network so that RTT and one-way delay are in a smooth state while avoiding throughput loss.

traditional algorithm because it is implemented at the receiver
side. In Fig. 7, we can see that the control of the window
in the Nuwa is closer to the actual change of the network
link. Moreover, Nuwa can send data using a better window so
that the number of packets in the network can fit the network
changes and reduce packet loss. Therefore, the throughput of
Nuwa in Fig. 7(d) is higher than the throughput under the
CUBIC algorithm.

C. The Impact of k

k is a key parameter in Nuwa to control the adjustment
magnitude of the window. Packet loss occurs in the current
experiment in two cases. First, packet loss occurs when the
instantaneous bandwidth of the network suddenly becomes
smaller, the link sending window is unable to sense the
bandwidth reduction and sends more packets than the link can
tolerate. There is also a case when the link bandwidth becomes
wider, the congestion control algorithm causes the congestion
window to be too large due to incorrect link calculation,
resulting in too much data sent to generate packet loss. And the
accuracy of the k-value directly leads to the data transmission
efficiency. The experimental results for different k are shown
in Fig. 8.

20 25 30 35 40 45 50 55 60

Time(s)

0

250

500

750

1000

1250

1500

Pa
ck

et
s/

1s

Bandwidth
error packets

(a) k=9

20 25 30 35 40 45 50 55 60

Time(s)

0

250

500

750

1000

1250

1500

Pa
ck

et
s/

1s

Bandwidth
error packets

(b) k=1

Fig. 8. The impact of k on the performance of TCP.

From Fig. 8, we find that as the value of k increases, the
change in throughput varies with the network’s fluctuation and
becomes more sensitive. When network fluctuations occur, a
significant drop in throughput occurs. At the same time, a
smaller value of k will cause the change of the window to lag
behind the change of the network, resulting in packet loss at
the falling edge. The algorithm’s k values range is [1-9]. After
experiments, it is proved that a k value of 7 is most suitable
for the 5G network. At k = 7 is our comparison of the Nuwa
and other algorithms for data transmission experiments. We
use our experiments’ data transmission size, packet loss rate,
and average queue length in 80 seconds under the same trace
as metrics. The experimental results are shown in Table 1.

TABLE I
DATA TRANSMISSION UNDER 5G TRACE2.

Algorithm Throughput Bit Error Rate Average Queue Length
BBR 168.5M 0.54% 144.93ms

BBRPlus 172.3M 0.61% 137.48ms
CUBIC 187.1M 0.87% 165.79ms
Inigo 177.5M 0.71% 146.3ms
PCC 185.3M 1.02% 177.5ms
Vegas 179.1M 0.82% 169.47ms

Westwood 177.8M 0.51% 134.74ms
Nuwa 194.5M 0.56% 125.4ms

We present the data transmission performance of different
algorithms under 5G Trace1 in Table 1, where k = 7 and
Td = 750. We conducted several experiments and averaged
the results. The table shows that Nuwa can maintain a high
throughput under fluctuating wireless network traces. This
is because Nuwa uses queueing delay as the indicator to
determine the network state. The table shows that Nuwa has
significantly higher control over the link than other algorithms.
Compared to the BBR algorithm, Nuwa throughput improves
by 15.4% and 4% over CUBIC. And it reduces up to 29%
in the pair average queueing delay. We also found that the
Westwood algorithm based on the wireless network design
can obtain a better throughput in the wireless environment
and effectively reduce the packet sending errors. Compared
with other algorithms, CUBIC’s packet loss-based concept
makes it possible to obtain better data transmission capability
even under wireless networks. Still, its network packet loss
is severe, and there is a high network packet loss. Therefore,
CUBIC’s overall throughput is limited.

20 40 60 80 100
Queue delay(ms)

8.5

9.0

9.5

10.0

10.5

Th
ro

ug
hp

ut
(M

bp
s)

BBR
BBRPlus
CUBIC
Inigo
PCC
Vegas
wetswood
Nuwa

(a) Shanghai 10M

14 16 18 20 22
Queue delay(ms)

8

9

10

11

12

Th
ro

ug
hp

ut
(M

bp
s)

BBR
BBRPlus
CUBIC
Inigo
PCC
Vegas
wetswood
Nuwa

(b) Beijing 10M

20 30 40 50 60 70 80
Queue delay(ms)

8.0

8.5

9.0

9.5

10.0

Th
ro

ug
hp

ut
(M

bp
s)

BBR
BBRPlus
CUBIC
Inigo
PCC
Vegas
westwood
Nuwa

(c) Guiyang 10M

15 20 25 30 35 40
Queue delay(ms)

12

14

16

18

20

Th
ro

ug
hp

ut
(M

bp
s)

BBR
BBRPlus
CUBIC
Inigo
PCC
Vegas
wetswood
Nuwa

(d) Shanghai 20M

14 15 16 17 18 19 20
Queue delay(ms)

13

14

15

16

17

18

Th
ro

ug
hp

ut
(M

bp
s)

BBR
BBRPlus
CUBIC
Inigo
PCC
Vegas
wetswood
Nuwa

(e) Beijing 20M

12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
Queue delay(ms)

16

17

18

19

20

Th
ro

ug
hp

ut
(M

bp
s)

BBR
BBRPlus
CUBIC
Inigo
PCC
Vegas
westwood
Nuwa

(f) Guiyang 20M

20 30 40 50 60 70 80 90
Queue delay(ms)

34
35
36
37
38
39
40
41

Th
ro

ug
hp

ut
(M

bp
s)

BBR
BBRPlus
CUBIC
Inigo
PCC
Vegas
wetswood
Nuwa

(g) Shanghai 50M

50 55 60 65 70 75
Queue delay(ms)

32

34

36

38

40

Th
ro

ug
hp

ut
(M

bp
s)

BBR
BBRPlus
CUBIC
Inigo
PCC
Vegas
wetswood
Nuwa

(h) Beijing 50M

45 50 55 60 65
Queue delay(ms)

36

37

38

39

40

Th
ro

ug
hp

ut
(M

bp
s)

BBR
BBRPlus
CUBIC
Inigo
PCC
Vegas
westwood
Nuwa

(i) Guiyang 50M

Fig. 9. Nuwa’s relationship between throughput and one-way queue latency under 5G network.

D. Nuwa under 5G network

We find that the correct estimation of one-way delay can
effectively improve the throughput of data transmission. In this
experiment, we compare Nuwa with other algorithms in 5G
network to show the advantages of Nuwa in wireless networks.
The topology of the experiment is shown in Figure 2. We
used Nginx [17] to set up a web service on a cloud server
and used it to provide file downloads. We deployed servers in
different regions to verify the effect of experimental distance
on the algorithm’s throughput and to show Nuwa’s control of
queueing latency. Requests are sent from Ningbo, and server
cities include Shanghai, Beijing, and Guiyang. We set the
server bandwidth to 10M, 20M, and 50M in different regions
to verify the impact of different bandwidths on the algorithm.
The experimental results are shown in Figure 9.

The throughput does not differ significantly between al-
gorithms when the bandwidth is small. As the bandwidth
increases, the throughput gap between different algorithms

starts to appear. The wireless design-based congestion control
algorithms, such as Westwood, begin to gain more bandwidth
as the bandwidth becomes larger. In contrast, packet loss-based
algorithms are performing poorly in the experiments, such as
Vegas and CUBIC. Due to the large number of buffers in the
mobile network, these types of protocols constantly fill the
buffer queue, and generating packet loss signals. This signal
indicates that the network is congested and forces the sender
to reduce its transmission rate. This type of processing creates
considerable queuing delays and cycles, resulting in under-
utilization of bandwidth. Detection-based algorithms, such as
BBR, BBRPlus, and PCC, perform similarly under mobile
networks. However, PCC does not perform as well as BBR and
BBRplus at large bandwidths. The main reason is due to the
fact that the PCC algorithm uses a different utility function to
adjust the window. The lack of control over queuing delays by
the function leads to many packet drops and retransmissions,
allowing PCC to have much lower throughput than other
congestion control algorithms. For Nuwa, queuing delay is

used as a criterion for link congestion. The main algorithm
is implemented at the receiver side, making the changes in
the Nuwa consistent with the user side. The performance of
the effect allows Nuwa to maintain a low latency while with
the high throughput. For the Inigo algorithm, which is also
implemented on the receiver side, the control of throughput
and queuing delay is worse than the Nuwa.

Performance of algorithm is relevant to transmission dis-
tance. The greater the distance, the more likely it will be that
queues will form during transmission. Provided that the band-
width is 50M, the data transmission efficiency of algorithms
begin to vary. BBR algorithms can maintain data transmission
in the east region, while their transmission capacities decline
when the server is located in the southwest region. PCC,
Vegas, and Inigo algorithms share this character. Among them,
Westwood algorithm can still maintain high network through-
put over long distance transmission. The CUBIC algorithm
distinguishes itself from other algorithms based on packet loss
for its throughput increase when the distance becomes longer.
However, its queuing delay is more serious than other similar
algorithms. Additionally, Nuwa keeps its overall throughput
at a high level as a result of its excellent control on queuing
delay.

E. Fairness

Fairness is also an important evaluation metric for conges-
tion control algorithms. When the delay-based approach suf-
fers significant throughput degradation when competing with
loss-based algorithms. As a delay-based algorithm, to prevent
the above situation, Nuwa sets different link optimization
objectives Td for different network scenarios. As shown in Eq.
2, the plus or minus of X determines the adding or reduction of
windows. And the increase of Td can boost the competitiveness
of Nuwa in the network.

0 10 20 30 40 50 60 70 80

Time(s)
0

5

10

15

20

B
an

dW
id

th
(M

bp
s) RSCC1

RSCC2
CUBIC1
CUBIC2

Fig. 10. Fairness experiment results.

We conducted the Nuwa fairness experiments in the exper-
imental topology in Fig. 5. We chose a stable bandwidth of
about 10M in CellSim. We used the iperf tool to analyze the
bandwidth consumption of the algorithm. Since the CUBIC
algorithm is still the default algorithm in Linux and it is
widely used nowadays, we chose the CUBIC as the loss-
based algorithm used in our experiments. We deployed the
CUBIC and Nuwa on the Sender side. For the current network
scenario, we adjust the Nuwa algorithm by setting Td to 512
to resist the CUBIC algorithm. And we add one stream every

10 seconds: two streams of Nuwa and two streams of CUBIC
are included.

The experimental results are shown in Fig. 10. A single
Nuwa stream can occupy bandwidth quickly and share band-
width when new Nuwa streams are added. Meanwhile, when
CUBIC streams join, the overall occupied bandwidth is less
than the Nuwa due to the CUBIC based on packet loss. Still,
with the window adjustment, after 50 seconds, the Nuwa and
CUBIC can share the bandwidth resources in the link.

VI. CONCLUTION

We propose a new TCP framework named Nuwa, which
is a receiver-driven congestion control framework. We imple-
mented the Nuwa in Linux kernel, which can be replaced by
a dynamic module loading mechanism. We use network link
queuing delay as a network congestion metric and use the
tanh function to determine the network window adjustment
range. We describe the algorithm and implementation of Nuwa
in detail. Through extensive testing, we confirm the feasibility
of the Nuwa reception scheme.

REFERENCES

[1] Narayanan A, Zhang X, Zhu R, et al. A variegated look at 5G in the
wild: performance, power, and QoE implications[C]//Proceedings of the
2021 ACM SIGCOMM 2021 Conference. 2021: 610-625.

[2] Jacobson V. Congestion avoidance and control[J]. ACM SIGCOMM
computer communication review, 1988, 18(4): 314-329.

[3] Lee S, Joo C. The CDN Pricing Strategies in the Internet Traffic Delivery
Chain[C]//2021 International Conference on Information Networking
(ICOIN). IEEE, 2021: 680-682.

[4] Allman M, Paxson V, Blanton E. TCP congestion control[R]. 2009.
[5] Parvez N, Mahanti A, Williamson C. TCP NewReno: Slow-but-steady

or impatient?[C]//2006 IEEE International Conference on Communica-
tions. IEEE, 2006, 2: 716-722.

[6] Zhu L, Ansari N, Liu J. Throughput of high-speed TCP in optical
burst switching networks[J]. IEE Proceedings: Communications, 2005,
152(3): 349-352.

[7] Ha S, Rhee I, Xu L. CUBIC: a new TCP-friendly high-speed TCP
variant[J]. ACM SIGOPS operating systems review, 2008, 42(5): 64-
74.

[8] Brakmo L S, O’Malley S W, Peterson L L. TCP Vegas: New techniques
for congestion detection and avoidance[C]//Proceedings of the confer-
ence on Communications architectures, protocols and applications. 1994:
24-35.

[9] Kim M J, Cloud J, ParandehGheibi A, et al. Network coded tcp (ctcp)[J].
arXiv preprint arXiv:1212.2291, 2012.

[10] Cardwell N, Cheng Y, Gunn C S, et al. BBR: congestion-based conges-
tion control[J]. Communications of the ACM, 2017, 60(2): 58-66.

[11] Shalunov S, Hazel G, Iyengar J, et al. Low extra delay background
transport (LEDBAT)[R]. 2012.

[12] Zahaib Akhtar. 2018. Oboe: auto-tuning video ABR algorithms to
network conditions. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. ACM, 44–58.

[13] Jiang, H.; Wang, Y.; Lee, K.; Rhee, I. Tackling bufferbloat in 3G/4G
networks. In Proceedings of the 2012 Internet Measurement Conference,
Boston, MA, USA, 14–16 November 2012; pp. 329–342.

[14] Im, H.; Joo, C.; Lee, T.; Bahk, S.Receiver-side TCP countermeasure
to bufferbloat in wireless access networks. IEEE Trans. Mob. Comput.
2016, 15, 2080–2093. [CrossRef]

[15] Dong P, Gao K, Xie J, et al. Receiver-side TCP countermeasure in
cellular networks[J]. Sensors, 2019, 19(12): 2791.

[16] Feng W, Fisk M, Gardner M, et al. Dynamic right-sizing: An auto-
mated, lightweight, and scalable technique for enhancing grid perfor-
mance[C]//International Workshop on Protocols for High Speed Net-
works. Springer, Berlin, Heidelberg, 2002: 69-83.

[17] Reese W. Nginx: the high-performance web server and reverse proxy[J].
Linux Journal, 2008, 2008(173): 2.

