Nuwa-RL: A Reinforcement Learning based
Receiver-side Congestion Control Algorithm to
Meet Applications Demands over Dynamic Wireless
Networks

Guanghui Gong, Xianliang Jiang, Guang Jin, Yi Xie, Haiming Chen
Ningbo University
Ningbo, Zhejiang, China
{2011082292, jiangxianliang} @nbu.edu.cn

Abstract—The advent of the wireless network has significantly
increased the amount of data transmitted on networks. Subject
to users’ location and network conditions, data transmitted on
networks exhibit different transmission characteristics and is
accompanied by the problem of data transmission and network
switching. Congestion Control is the key to solving these prob-
lems. However, the traditional Congestion Control is deployments
relied on rule-based heuristics and tested on a predetermined set
of benchmarks. Consequently, these Congestion Control algo-
rithms cannot cope with the challenges of diversified services. To
address these problems, we propose Nuwa-RL, which integrates
the reinforcement learning algorithm PPO-LSTM in combination
with the congestion control algorithm at the receiver side to
fulfill control over network data transmission. Based on data
obtainable at the receiver side, Nuwa-RL dynamically adjusts
changes in the window to fulfill control over data transmission
by using reinforcement learning. Experiments show that PPO-
LSTM is more suitable for use in wireless networks. Compared to
traditional congestion control methods, Nuwa-RL achieves high
throughput with low latency.

Index Terms—receiver-side, Congestion Control, reinforcement
learning

I. INTRODUCTION

The main factor of network congestion is the speed at
the data senders to transmit data exceeds the processing of
the receiver, result the data buildup in the network causing
congestion. Network congestion is accompanied by packet
loss and increased transmission delay. These problems are
intolerable in applications that require high throughput and
low latency. Therefore, providing a stable network service and
reliable data transmission is crucial for the current network.

Congestion control is the main component of current net-
works and the key method used to solve network congestion
problems. However, the traditional Congestion Control is

Manuscript received xx xx, 2022. This work was supported in part by
the National Natural Science Foundation of China (61601252), the Natural
Science Foundation of Zhejiang Province (LY20F020008, LY21F020006),
the Ningbo Natural Science Foundation (202003N4085), the Ningbo Public
Welfare Project (202002n3109), the Special Research Funding from the
Marine Biotechnology and Marine Engineering Discipline Group in Ningbo
University (No. 422004582), the Ningbo Key Science and Technology Plan
(2025) Project (2019B10125, 2019B10028, 20201ZDYF020077).

deployments rely on rule-based heuristics and tested on a
predetermined set of benchmarks. As a result, traditional
congestion control algorithms are not performing as well
as they could when the network becomes more complex.
And more granular control is needed in existing networks.
Therefore, designing a congestion control algorithm that can
handle network challenges is critical for data transmission
performance.

With the development of Reinforcement Learning(RL),
researchers have found that using RL to solve congestion
problems is a very promising solution. Such as Q-TCP [16],
uses Q-learning algorithm to design a congestion control
algorithm. It helps the sender to learn optimal congestion
control in an online manner without any prior knowledge of
the network model. Kong et al [2] proposed two learning-
based TCP congestion control schemes for wired networks.
One is a supervised learning-based packet loss predictor and
the other is a congestion control scheme based on RL, namely
SARSA algorithm.

In this work, the aim is to design a congestion control
algorithm that adapts to changes in the network and responds
to data transmission in a targeted manner. We implemented an
algorithm called Nuwa. In Nuwa, we implement a decoupled
congestion avoidance phase on the sender side and implement
it on the receiver side. Compared to other traditional con-
gestion control algorithms, Nuwa achieves 20% throughput
improvement. However, Nuwa is a heuristic-based algorithm
that can only make decisions for a specific network state.
When the network state is constantly changing, Nuwa cannot
adapt to all network states. When the network switchover,
Nuwa is prone to throughput degradation and delay increase.
Therefore, we propose Nuwa-RL to improve the heuristic
congestion control algorithm using RL so that Nuwa-RL can
be adapted to different network environments.

In this paper,we make the following contributions:

o Based on the Nuwa algorithm we implement an RL

version of the algorithm (Nuwa-RL), and propose an RL-
based congestion control scheme for the receiver side.

o We test multiple RL methods and the combined RL-based
scheme in a dynamic network environment to verify
the effectiveness of Nuwa-RL in adapting to dynamic
network environments.

The structure of this paper is shown as follows. Section 2
introduces the background. Section 3 illustrates the problem.
Section 4 presents the feasibility of using RL. Section 5
details the implementation of the Nuwa-RL framework, and
the experimental justification in Section 6. Section 7 presents
related work and concludes the full paper in Section 8.

II. BACKGROUND
A. Traditional TCP Congestion Control

The purpose of congestion control is to achieve rational
transmission of packets in the TCP network. Under the
premise of fully utilizing the network bandwidth, the sending
and receiving ends negotiate the data transmission range
through congestion control to achieve reasonable utilization
of network resources. The basic idea is to maintain two win-
dows, the congestion window (Cwnd) and the receive window
(Rwnd), at the sending and receiving ends, respectively. Data
transmission is regulated by selecting the smallest of the two
windows as the send window (Swnd) for data transmission.
For each link, Cwnd is able to dynamically determine the total
number of packets to be transmitted. Therefore, congestion
control is able to achieve the control of data transmission.

Most of the current congestion control schemes are imple-
mented based on heuristic algorithms, such as CUBIC, Vegas,
etc. The implemented congestion control is divided into four
main phases (the Rwnd uses the default adjustment policy),
namely Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery.

Slow Start. Cwnd is set to an MSS (Maximum Message
Segment) at the beginning of a TCP connection. The conges-
tion window is doubled whenever the TCP sender sends all
the data in the sending window and receives all the acknowl-
edgments successfully, i.e., the window changes exponentially
during this phase to occupy the available bandwidth quickly.

Congestion Avoidance. When the window is larger than
ssthresh (the dividing point between the slow start phase
and the congestion avoidance phase of congestion control).
Congestion control enters the congestion avoidance phase.
Cwnd is set to 1 when the network is congested, and ssthresh is
set to half the size of the congestion window when congestion
occurs, then congestion control reverts to the slow start phase.

Fast Retransmit. This phase is proposed to enable the
sender to retransmit packets as soon as possible in case of
packet loss, instead of waiting for the timeout timer to be
updated, and TCP requires the receiver to send a reception
acknowledgment immediately after receiving data. Instead of
waiting for the timeout timer to expire, Fast Recovery.

Fast Recovery. This phase typically occurs in conjunction
with Fast Retransmission. The current packet is considered
lost when the sender receives three consecutive duplicate
acknowledgments, and this phase sets both ssthresh and Cwnd

to half of the congestion window in the current state, and then
enters the congestion avoidance phase.

The traditional Congestion Control deployments rely on
rule-based heuristics to provide feedback on specific network
signals to regulate data transmission. At the same time this
also brings some problems: (1) it may not be able to adapt
to the new network environment when the network changes
rapidly; (2) the traditional congestion control scheme has a
single form of control, and once the function is determined, the
corresponding policy is not capable of self-optimization. The
above two drawbacks lead to the inability of the traditional
congestion control algorithm to achieve the promised results
in the current networks.

B. RL-based Congestion Control

To address the shortcomings of traditional congestion con-
trol algorithms, research has focused on RL-based congestion
control algorithms. It can adjust the control policy imme-
diately according to the change in network status. Existing
RL-based congestion control systems can be divided into
two categories: the value-based and the policy-based RL
congestion control systems.

a) Value-based RL Congestion Control System: Value-
based RL algorithms make policy decisions by using the
introducing value functions to estimate the expected returns
at future moments. The core of value-based algorithms lies in
how to optimize the value function by continuously exploring
the environment, so as to establish a metric for the decision
payoff of the entire state-action space, and use it as a basis
for policy decisions. The value function contains two forms:
(1) State-value function: given the current policyr(a | s),Use
V7(s) = 32, apmn 2277 (Stsa1) | 50 = 5] to indicate the
mapping of state space to actual markers. (2) State-action
value function: given the current policyr(a | s), Q™(s,a) =
D erapmn Do (81,01) | 80 = 5,a0 = al. It is easy to see
that the two functions satisfy V™ (s) = >" Q7 (s,a)m(a | s).
When the state-action function under the optimal policy is
solved, it can be used for policy-making. In the case that
the environment model is determined, it can be solved using
dynamic programming-based value iteration or policy iteration
methods. Current value-based optimization methods include
both Monte Carlo methods and Temporal Difference learning
schemes.

The Monte Carlo method approximates the value of the
function mainly by sampling the transfer model. In each round
of stochastic exploration, a random initial state is started.
The algorithm continuously makes greedy decisions using
the current state-action function until the end of the decision
sequence.

The Temporal Difference method is mainly used when the
search range of states or actions is large. In this case, the
Monte Carlo method is significantly constrained in terms of
sample complexity and training efficiency due to the limitation
that the complete trajectory must be sampled after each round.
To solve this problem, Richard S. Sutton et al. proposed the
method of Temporal Difference (TD) learning to increase

the frequency of value function updates. The basic idea of
Temporal Difference learning is to use the existing value
function estimates as part of the value function supervised
signal, to avoid the problem of having to sample to the end
state of the trajectory in order to perform calculations on the
returns. Representative algorithms include Q-learning, DQN,
and other algorithms.

b) Policy-based RL Congestion Control System: RL
methods such as Monte Carlo methods and temporal differenc-
ing use the parameters to approximate the target value, and the
actions taken by these methods are determined at each state.
However, the limitations of the individual in observing the
environment may lead to similar environments where different
actions should be taken. In this case, the preferred strategy is
stochastic, where the actions taken need to be different and
actions that approximate the deterministic value are flawed.
Therefore, a Policy-based RL algorithm is proposed.

The objective of the policy-based approach is to parameter-
ize the policy. It will build the policy model 74 (s, a). When the
input states, the algorithm is able to calculate the probability
of each action being executed to obtain a high return and
selects the action according to the probability. 6 is the key to
obtaining the optimal strategy my(s, a). The policy function is
shown in equation 1.

7o(s,a) = Pla | 5,0) ~ 7(a | 5) ()

The policy function 7y (s, a) is a probability density func-
tion that determines the probability of all behaviors by given
states and certain parameter settings. And the parameter 6
determines the specific form of the strategy, so it is necessary
to solve the optimal parameter 6 and thus decide the optimal
strategy through the objective function J(6). The current main
objective function J(¢) has three forms, as shown in equation

C)ICH2

J1(0) = Vz, (s1) = Ex, (G1) 2
Jawv (0) = Zdﬂe (8) Vo (3) 3)

Jawr(0) == Z drp(8) Z mo(s,a)RY)]

The Eq. (1) can be used to solve for J(#) when there is
a well-defined initial state for the optimization objective. Eq.
(2) is used when the optimization objective does not have
an explicit initial state, then the average value is used to
optimize the objective. Eq. 3 then calculates J(6) by defining
the average reward for each step.

By [4] we can derive that the gradient of the above three
equations with respect to the optimization objective can be
expressed as follows:

VoJ(0) =E, 9 [Vologma(s,a)Qx(s,a)] 5)

With the optimization objective of the function, by analyz-
ing a specific scenario, we are able to define the corresponding
evaluation function.

III. NUWA DESIGN AND PROBLEMS
A. Nuwa Algorithm

We implemented a heuristic-based congestion control al-
gorithm, named Nuwa. The algorithm is implemented on the
receiver side by decoupling the congestion avoidance phase
from the congestion control algorithm on the sender side.
When entering the congestion avoidance phase, we modify
the code on the sender side so that the sender set the Cwnd
as the receive window from the receiver’s reply ack header.
The control logic of the receive window at the receiver side is
also modified to adjust the receive window using a heuristic
algorithm. Nuwa implements optimization of the traditional
congestion control based on the Linux kernel control logic
to achieve improved data throughput in a wireless network
environment. The receiving window adjustment logic in Nuwa
is shown below:

« First, Nuwa calculates the current network one-way delay

based on equation (6) to determine the degree of network
link usage.

Dc = (Sf - Sm) - (Rf - Rm) (6)

« Then set different experimental targets according to the
characteristics of different links and user usage scenarios
Ty

o Considering the mutability of the network, we use
0 = tan h(z) as the adjustment function of the Rwnd.
Where x = La=L< The positive and negative x’s are
used to control the direction and magnitude of adjustment
of the window. p is the sensitivity factor for queuing
delay fluctuations, which is used to map the experimental
network changes into the tanh function to represent the
network changes.

o Finally, use equation (7) to adjust the receive window
size. The formula enables precise control of the win-
dow in different network situations. When the network
changes a lot, the window is at a high level, and it will
reduce the size of the window adjustment range, and vice
versa.

Whew < Wold + (0 - k) /woia (7
B. Limit of Nuwa

Nuwa is able to effectively prevent throughput degradation
due to bursts of network degradation in networks. However,
Nuwa is a heuristic-based dominance control algorithm. When
the network network switching will result that the parameter
is not suitable for the changed network, resulting in failure to
achieve the promised results.

Since the popularization of 5G, there is a situation where 4G
and 5G networks are shared in the current network. According
to the International Telecommunication Union (ITU), the 4G

transmission rate reaches 1Gbps and can reach 100Mbps
in a high-speed mobile state. 5G technology has further
improved the data transmission capability compared to 4G.
By using a higher frequency band based on 4G, 5G makes the
transmission more efficient. The peak transmission speed of
5G can reach 20Gbps, which is more than 20 times faster than
the transmission speed of 4G networks. But the increase in
waveband also means less base station coverage. This makes
the problem more obvious when switching between networks
in life. We experiment in real mobile networks to test the
performance of Nuwa in different network environments and
compare it with the traditional congestion control algorithm
CUBIC.

50

e L
o re)
= 8 =

3 5%
£ £

=] o 20
=1 =1
2, 2

= = 10
= =

0 0

CuBIC Nuwa k=7 Nuwa k=1 CUBIC Nuwa k=7 Nuwa k=1
(a) 4G (b) 56

Fig. 1. Throughput in Nuwa’s different networks.

The experimental results are shown in Figure 1. The k is a
key value in Nuwa that can adjust the aggressiveness of the
algorithm window change. Therefore, in our experiments, we
used different values of k in 4G and 5G networks. According
to the results, Nuwa has a higher improvement in network
throughput than the traditional congestion control algorithm.
In 4G networks, it is more obvious that Nuwa has improved
the data transfer speed. In contrast, the transmission speed of
CUBIC is stable in two ranges of 3Mbps and SMbps. Nuwa’s
transmission speed to the traditional network is around SMbps
in 5G network.

The effect of the k value on Nuwa is mentioned in the
distribution of transmission speed. In 4G networks, a small
value of k is more conducive to windowing because of the
low bandwidth. It can avoid excessive window adjustment.
From 2(a), it shows that the data distribution of k=1 is more
consistent with the 4G network when comparing the different
upper and lower quartile positions. And with 5G networks, a
more aggressive tuning scheme is required due to the higher
jitter of 5G networks. When k=7, Nuwa is more compatible
with the 5G network environment.

C. Why PPO-LSTM

Based on previous experiments, selecting a suitable k value
for a TCP stream in Nuwa is not an easy task. Using the
traditional heuristic for the k value is the current Nuwa main
solution, and it is the main way for traditional congestion
control to adjust the key value. However, with the increase
in network complexity, traditional heuristic schemes cannot
achieve matching for multiple network environments. The

complexity of the network is reflected in its high correlation
between multiple complex factors and its emphasis on real-
time. Such as bandwidth size, RTT, current sending window
size, etc. Therefore, it is difficult to select the appropriate value
in a large search range. However, matching in large search
ranges is something that RL excels at. RL, inspired by the psy-
chology of human behavior [5], is a popular technique in the
machine learning community. RL constantly makes decisions
based on environmental feedback. Once the reward function
achieves a dynamic balance between exploring suboptimal
decisions and exploiting the current optimal decision, it is able
to find the best decision based on trial and error. Therefore,
RL is a fit for tuning the parameters in the algorithm according
to the real-time changes in the network.

In this work, we select PPO-LSTM as the main algorithm to
improve Nuwa. PPO is a policy gradient algorithm proposed
by Schulman et al. in 2017. PPO is an improvement on Trust
Region Policy Optimization (TRPO), which uses a simpler
tailoring agent target and omits the expensive second-order
optimization in TRPO. But PPO involves the learning and
computation process of updating with minimally cropped
strategies at each iteration. The large differences between
the old and new strategies easy to make wrong decisions.
[7] proposes that the inclusion of LSTM in the network of
PPO can effectively improve the prediction effect. And we
believe that the addition of LSTM can even solve the learning
problem of PPO in the network effectively, our subsequent
experiments demonstrate this. Therefore, we introduce PPO-
LSTM in Nuwa-RL to solve the problems encountered in
Nuwa.

IV. NUWA-RL PREVIEW
A. Nuwa-RL Design

Application

Data } Set Target
ACK Packets v
Connection Network Data
Manager State Collector
=}
g A
g Fresh data
\I/ Set Rwnd
o
g Y
o Action PPO-LSTM
Nuwa Algorithm Reinforcement
Learning
t request
Client Control Center

Fig. 2. Nuwa-RL Design.

We add the RL part to Nuwa to implement our design, and
the overall architecture diagram is shown in Figure 2. The
design is divided into three parts: (1) server-side configuration,
(2) receiver-side configuration, (3) and the RL part.

The server-side is mainly used to provide the data support
services required by the client. We mainly modified the con-

gestion avoidance part of the kernel on the server side, and we
handed over the functionality of that part to the receiver side.
The server side set the window value in the client-side packet
header as the current send window size. As receiver-side, we
deploy the Nuwa-RL algorithm in the kernel. With 10 lines
of code, we export the tcp_clamp_window method in kernel
tcp_input.c and implement the same algorithm deployment
as server-side congestion control with module plugging. We
have implemented reinforcement learning using the Stable
Baselines3 framework in the user state. Since the kernel state
and the user state cannot communicate directly in Linux, we
redesigned the data collection part and the data transfer part.
First, we implemented the real-time collection of kernel data
using the eBPF technique. The eBPF collects the kernel data
through kprobe technology and efficiently delivers the data
to the user state. Considering the relevance to the current
form of algorithm deployment at the receiver side, we use
Neilink for passing data to the kernel. This technique uses
socket technology to pass data between the user state and the
kernel state. We present the main algorithm of Nuwa-RL in
Algorithm 1.

Algorithm 1 The Nuwa-RL Algorithm

1: wnitial :

2: Ty < 0,5, < 500 (ms),R,, < 0

3: Delaymin < a large value;

4: p < a suitable value

5: for each ACK do

6: Sy < Timestamp of packet delivery;
7. Ry + Timestamp of packet receive;
8
9

Dc = (St - Sm) - (Rt - Rm)
. if Delaymin = 0||D. < Delay,i, then
10: Sm — S

11: R, + R;

12: Delaymin < D,
13: end if

14: x ¢+ Ta—De

P
15: 0 « tanh(x)

16: k < get k from Reinforcement Learning
17: Whew S Wola + (9 . k)/wold

18: end for

Considering that different systems have different clock fre-
quencies, we use the one-way delay in the link to calculate the
current network state. We collect the current data sending time
and arrival time by collecting each ack packet information
and use equation (1) for the one-way delay (lines 6-8). The
accuracy of the D, data is ensured by recording the minimum
transmission delay of the current network packet (lines 9-12).
We compute the previously collected data and also obtain
the k-value returned by RL part and bring it into Eq. (7) to
compute the new Rwnd.

B. RL Algorithm Design

The States. The state information in PPO-LSTM is used for
inference of actions and learning of models. An accurate, real-

time state is a prerequisite for RL algorithms to make correct
decisions. Using the knowledge from past can effectively
improve the performance of the algorithm. Therefore, a trade-
off between model convergence and state space needs to be
considered. Based on the appeal considerations, we selected
the following characteristics as the data for state selection:

« rcv_data: the data received by the receiver during a period

of time.

e new_win: new window size

o racv_space: The size of the real-time cache on the

receiver side.

o rtt_us: rtt of the last packet sent

With the eBPF technique, we obtain real-time data from the
kernel as input to the model State.

Actions. In the Nuwa algorithm, the k value is mainly
adjusted for the radicality of the window change. Therefore,
according to the range of window changes, we classify the
actions of RL output into five types, matching different
levels of changes. Inspired by the BBR [15] algorithm, using
approximately equal to 2.89 as one of the behaviors allows the
agent to quickly adapt to changes in the network environment.
To achieve the optimal sending rate, the sending rate is fine-
tuned using 1.25 and 1.05, respectively. After the algorithm
reached stability action=1 was able to keep the behavior stable
at the optimal operating point. When the network state starts
to deteriorate, we make action = 0.25 to achieve the reverse
adjustment of the window to achieve the adaptation to the
network state change. The Nuwa-RL action space is shown
below.

Action = {0.25,1,1.05,1.25,2.85} (8)

Reward Function. In resource allocation, the alpha-fair
function [6] is widely used to evaluate the quality of band-
width allocation when multiple streams share the same link.
The alpha-fair function is defined as follows.

[log(x),a=1
UO‘(I){ %,a>0,a7é1 ©)

Nuwa’s implementation at the receiver-side aims to achieve
a tradeoff between throughput and latency. It is important to
maintain low latency and low packet loss in the network while
achieving high bandwidth utilization and good fairness. Com-
bining the alpha-fairness function we set the utility function
as shown in Equation 10.

U (@(6),7(8),1(1) = 7 Ua@(t) = 8- U (r,(1)) = 0 7i(2)
(10)
Where ~, 0, ¢ are constants to indicate the importance of
throughput, delay and packet loss in the Reward Function in
the formula. In the experiment, we set v = 0.4,0 = 0.4, ¢ =
0.2, = 0.6. Adjusting the appropriate values allows the
Reward Function to be adjusted in a stable range.
Training. The Agent is implemented in python and trained
in a custom Gym environment for OpenAl. We train and test in

a real network transmission environment and testbed (cellsim).
In cellsim, we use the traces we collect under the real network
to ensure the authenticity of the experimental results. We
set 800 steps as a training period to avoid overfitting of the
training.

V. EVALUATION

A. Experimental environment

Cloud Server

(TR), —

A :
: UE : Base Station 6
' |
' |
I | Cellsim
| | Local Server
| | [—
I L—— —_—

PC WiFi °

Fig. 3. Experiment Topology.

The experimental environment in this paper includes the
real experimental environment and the simulated experimental
environment. The topology of the experimental environment
is shown in Figure 3. A Think Pad laptop X1 Carbon was
used for the receiver PC to deploy the receiver algorithm
and connect through the collection and wireless network. For
the local network simulation experimental environment we
used two mainframes (DELL i5 4G) for deploying Cellsim
network simulation and as local servers, respectively. For the
cloud server, we used the service provided by Huawei Cloud
(4vCPU, 8GiB) for deploying cloud services. We deploy the
same data on the cloud server and the local server to ensure
the consistency of the experimental results.

B. RL Learning Efficiency Comparison

TABLE 1
THE RL ALGORITHMS IN SB3 SUPPORT INSERT AND RESULT STRUCT.
Name | Box | Discrete | MultiDiscrete | MultiBinary
A2C 4 4 4 4
DQN | ¢V b 4 X X
DDPG | % v X X
HER | ¢V v X D 4
PPO v v v v
SAC | v b 4 X D 4
TD3 v b 4 X X

We implemented the Stable Baselines3 framework for the
RL part. Different RL algorithm has restrictions on the input
and output formats of the data. Therefore, we conducted a
statistical analysis of the supported input and output formats

of the RL algorithms implemented in the framework before
our experiments. The results are shown in Table 1.

Different RL algorithm has different performances when
used in wireless networks. According to table 1 and the
data format in Nuwa-RL, we selected A2C, DQN, PPO,
and PPO-LSTM for comparison experiments to compare the
learning ability of different RL algorithms in the wireless
network environment. We conducted the experiments in wired
networks, WiFi, 5G, and 4G. The experimental results are
shown in Figure 4.

In the experiment, we selected the learning efficiency and
Reward value as the comparison condition. From the results,
we found that due to the setting of the reward function, most
of the experimental results are arranged according to {5G,
4G, Wire, WiFi}. But, under the same network conditions,
different RL algorithm performance starts to emerge. In WiFi
and 4G network environments, the time required for the
A2C learning rate to the plateau is higher than that of
other networks. And PPO-LSTM learns more slowly than
other algorithms in all four network conditions. And PPO-
LSTM learns more slowly than other algorithms in all four
network conditions. We conjecture that it is due to the gradient
problem of RNN in the LSTM network that causes the slow
learning rate when dealing with long sequence problems.
Using Reward as the evaluation metric, we find that networks
with high bandwidth tend to have higher Rewards. There are
also exceptions, and we find that PPO-LSTM can stabilize
Reward between 4 and 5 under different networks through
experiments. Compared with PPO, the advantage of PPO-
LSTM is more obvious. DQN is also capable of achieving
Reward stability within a certain range, but its Reward is lower
than that of PPO-LSTM. Therefore, PPO-LSTM becomes the
main RL algorithm used in Nuwa-RL.

C. The performance of Nuwa-RL

PPO-LSTM has an excellent performance in the learning
process. We use PPO-LSTM to adjust the k of Nuwa so that
the Nuwa can adapt to the changes between different network
environments. We use a real network scenario to validate
the trained model. The four network types Wire, WiFi, 4G,
and 5G are selected. The experiments are performed in the
form of file transfers and we use different congestion control
methods in a 40-second time frame. Package in flight, One-
Way Delay, RTT, and average Throughput are selected as
evaluation metrics. Each algorithm experiments several times
in different networks and the results are averaged. In the
final data presentation, we divide the metrics in the same
network environment by the largest metric to compare the
gap between the algorithms. The experimental results are
presented in Figure 5.

The current algorithm CUBIC built into the Linux kernel
and the BBR algorithm proposed by Google is selected as
the comparison algorithms in the experiments. Hd-TCP [3]
is also selected as the comparison algorithm for the RL
algorithm. From the experimental results, we find that the
BBR detection-based algorithm is more advantageous in a

O 25

—

© 20

2

s

o 10 4G
— 5G

0.5

— Wifi

0 100 200 300 400 500 600 700 800

Training Episode
(a) A2C learning rate.

0 100 200 300 400 500 600 700 800

Training Episode
(b) DQN learning rate.

P

Reward

0 100 200 300 400 500 600 700 800

Training Episode
(c) PPO learning rate.

0 100 200 300 400 500 600 700 800

Training Episode
(d) PPO-LSTM learning rate.

Fig. 4. Comparison between different RL algorithms. The better RL algorithm strikes a balance between faster learning efficiency and higher reward values.

Packageliora flight

Packageliora flight

\ 4

Throughput
(a) Wire

Throughput
(b) WiFi

Packageliora flight Packageliga flight

0
Oneway Onewa
Delay RTT Deay RTT
A4
—— BBR
Throughput cuBIC Throughput
—— Hd-TCP
(c) 4G Nuwa-RL (d) 5G
Fig. 5. Compare the Package in flight, RTT, Throughput, and One-Way

delay during data transmission in the same network to verify the protocol’s
control performance. The values of a particular dimension are divided by the
maximum value of that dimension in the figure to facilitate comparison.

stable network transmission environment. It is able to maintain
low transmission delay and queueing delay in the network
while having high data transmission capability. However, in
wireless networks, BBR obviously loses its advantage. In
the 4G network environment, the BBR algorithm transmits
almost no data during most of the data transmission. CUBIC
uses packet loss as a congestion signal in different network

environments, causing CUBIC to send too much data to the
network. This results where CUBIC’s data transmission being
accompanied by extremely high data transmission delay while
maintaining high throughput.

Among the reinforcement algorithms, the Hd-TCP algo-
rithm is also able to achieve higher throughput based on
achieving lower latency, especially in 4G and 5G. In the
experiments, the jitter of 4G Trace is greater than that of other
Traces. However, Nuwa-RL also achieves the goal of achiev-
ing better data transmission capability in multiple networks in
data transmission experiments. In wired networks, Nuwa-RL
achieves throughput similar to CUBIC while providing better
control of queueing delay than CUBIC. When the network
environment is switched, especially under wireless networks.
Nuwa-RL integrates Nuwa’s resilience to wireless network
fluctuations. Nuwa-RL is also able to maintain high data
transmission capacity in wireless networks.

D. Fairness

In the real network, a good congestion control algorithm
not only achieves the occupation of free bandwidth but also
shares the bandwidth fairly with other algorithms is one of
the evaluation criteria. In Nuwa-RL, its fairness is ensured by
(1) the value of k and (2) the use of the alpha-fair function.
When the available bandwidth changes, modifying the k value
can effectively adjust the magnitude of the window change
and achieve the purpose of fast window modification. The
application of the alpha-fair function in Reward ensures that
the value of Reward is not too high in a multi-stream environ-
ment leading to a bandwidth-exclusive situation. Therefore, we
conducted fairness experiments on NUwa-RL. We conducted
multi-stream transmission experiments in a local simulated
experimental environment. We use CUBIC as a control sample
since CUBIC is the current default congestion control algo-

rithm for Linux. A new stream is added every 10 seconds to
the link of the same bottleneck in our network. Two Nuwa-RL
streams and two CUBIC data streams, respectively.

—— Nuwa-RL1
Nuwa-RI2

—— CUBICI

— CUBIC2

N
i

N
S

BandWidth(Mbps)

w

V\v\/‘ v"

Time(s)

Fig. 6. Fairness experiment. Nuwa-RL is able to share the link bandwidth
with other congestion control algorithms when they are on the same link.

The experimental results are shown in Figure 6. After
training, Nuwa-RL can effectively cope with multi-stream
scenarios during data transmission. When a change in network
delay is detected, Nuwa-RL modifies the change direction
of the window in a timely manner. And the adjustment of
the k-value enables Nuwa-RL to modify the window quickly
and drop the window modification to the target level and
maintain it in a timely manner. When a packet-drop-based
flow joins, Nuwa-RL can adjust the k-value in time to share
the bandwidth fairly with the new flow after a slight drop in
throughput.

VI. RELATED WORK
A. Traditional TCP Congestion Control

Server-side oriented congestion control protocols: Most
of the data in the network environment are transmitted base
on TCP, so congestion control of TCP has been one of the
research topics of great interest. Congestion control algorithms
are critical to the performance of network data transmission.
Based on different congestion feedback, server-side conges-
tion control algorithms can be classified into three categories:
loss-based algorithms, delay-based algorithms, and delay-
based combined loss algorithms. TCP Reno [9], and TCP
NewReno [10] were among the early approaches that were
loss-based congestion control algorithms. HSTCP [13] and
CUBIC [11] modify the window growth model to achieve high
network utilization quickly. CUBIC is the default congestion
control algorithm in the Linux kernel. Delay-based protocols
(e.g., TCPVegas [14]) detect network congestion and adjust
cwnd based on RTT, which can react to network conditions
faster than packet-drop-based algorithms. However, the delay-
based approach suffers significant throughput degradation
when competing with loss-based algorithms such as TCP-
Reno. In addition, CTCP [12] combines delay-based compo-
nents into a loss-based TCP congestion avoidance algorithm.
TCP BBR [15] estimates the bottleneck bandwidth and RTT
latency. It uses distributed control loops to achieve an optimal
state that exploits the network while maintaining small queues.

B. RL-based Congestion Control

To address the problem of rule-dependent algorithms that
are not adapted to the network environment, learning-driven

algorithms have received a lot of attention in recent years.
QTCP [16] uses the Q-learning algorithm in the field of RL.
It transforms the congestion window adjustment problem into
a RL-based problem, thus the algorithm enabling automatic
adjustment of the packet sending rate. However, the real
network has a large state space making the method extremely
robust. Hd-TCP [3] combines heuristic algorithms with deep
RL-based algorithms, and uses different policies for different
states to improve the robustness of the algorithm. This enables
Hd-TCP to achieve effective transmission in actual network
transmission.

VII. CONCLUTION

We implemented Nuwa’s version based on reinforcement
learning, called Nuwa-RL. We use PPO-LSTM to solve the
problem that Nuwa cannot adapt to different wireless net-
works. Through experiments, we provide that PPO-LSTM
has better learning performance in wireless network. With
PPO-LSTM, we achieve high throughput in different networks
while satisfying low latency. Moreover, we use an alpha-
fair function combined with Nuwa’s original mechanism to
achieve fair bandwidth sharing with other congestion control
algorithms.

REFERENCES

[1] Li W, Zhou F, Chowdhury K R, et al. QTCP: Adaptive congestion
control with reinforcement learning[J]. IEEE Transactions on Network
Science and Engineering, 2018, 6(3): 445-458.

[2] Kong Y, Zang H, Ma X. Improving TCP congestion control with
machine intelligence[C]//Proceedings of the 2018 Workshop on Network
Meets Al & ML. 2018: 60-66.

[3] Cui L, Yuan Z, Ming Z, et al. Improving the congestion control
performance for mobile networks in high-speed railway via deep re-
inforcement learning[J]. IEEE Transactions on Vehicular Technology,
2020, 69(6): 5864-5875.

[4] Sutton R S, McAllester D, Singh S, et al. Policy gradient methods
for reinforcement learning with function approximation[J]. Advances
in neural information processing systems, 1999, 12.

[5] Sutton R S, Barto A G. Reinforcement learning: An introduction[M].
MIT press, 2018.

[6] Srikant R, Basar T. The mathematics of Internet congestion control[M].
Boston: Birkhiuser, 2004.

[7]1 Andrychowicz O A T M, Baker B, Chociej M, et al. Learning dex-
terous in-hand manipulation[J]. The International Journal of Robotics
Research, 2020, 39(1): 3-20.

[8] Huang, et al., "The 37 Implementation Details of Proximal Policy
Optimization”, ICLR Blog Track, 2022.

[9] Allman M, Paxson V, Blanton E. TCP congestion control[R]. 2009.

[10] Floyd S, Henderson T, Gurtov A. The NewReno modification to TCP’s
fast recovery algorithm[R]. 2004.

[11] Ha S, Rhee I, Xu L. CUBIC: a new TCP-friendly high-speed TCP
variant[J]. ACM SIGOPS operating systemsreview, 2008, 42(5): 64-74.

[12] Kim M J, Cloud J, ParandehGheibi A, et al. Network coded tcp (ctep)[J].
arXiv preprint arXiv:1212.2291, 2012.

[13] Chase J S, Gallatin A J, Yocum K G. End system optimizations for
high-speed TCP[J]. IEEE Communications Magazine, 2001, 39(4): 68-
74.

[14] Brakmo L S, Peterson L L. TCP Vegas: End to end congestion
avoidance on a global Internet[J]. IEEE Journal on selectedAreas in
communications, 1995, 13(8): 1465-1480.

[15] Cardwell N, Cheng Y, Gunn C S, et al. BBR: congestion-based
congestion control[J]. Communications of theACM, 2017, 60(2): 58-
66.

[16] Li W, Zhou F, Chowdhury K R, et al. QTCP: Adaptive congestion
control with reinforcement learning[J]. IEEE Transactions on Network
Science and Engineering, 2018, 6(3): 445-458.

