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Cold-Start-Aware Offloading and Resource
Allocation by Importance Sampling-Based Double
Dueling DQN 1n Serverless Edge Computing

Peihao Wu"', Haiming Chen

Abstract—Serverless edge computing (SEC) seamlessly inte-
grates edge computing with serverless computing, not only
overcoming the limitations of resource-constrained edge nodes
but also alleviating the high latency associated with cloud
response. Due to the elastic scalability of serverless computing
platforms, the cold start of latency-sensitive serverless functions
(SFs) has become a significant challenge. Traditional strategies,
such as resource reservation and prewarming, often suffer from
low resource utilization. Meanwhile, offloading-based approaches
simplify the problem by assuming a fixed high cold start delay
cost, which is unsuitable for heterogeneous SEC scenarios. This
article proposes a cold-start-aware offloading by doubledueling-
DQN (CSODQN) model for SFs in a cloud-edge—device serverless
computing system. The model creates an instance warming pool
for SFs to enable reuse and allocates edge service node resources
based on the priority of user and SFs, achieving multiobjective
offloading optimization that considers cold starts. Our goal is to
balance the frequency of cold start and resource utilization. To
address the partially observable offloading optimization problem
among agents, we employ a multiagent deep reinforcement
learning approach. By introducing an priority of action-based
sampling strategy, we accelerate the convergence of learning
for each agent. Simulation results demonstrate that our method
improves task success rates, reduces average task latency and
cold start occurrences, and enhances resource utilization. Our
approach alleviates the frequency of cold starts without exces-
sively consuming system resources and costs, achieving long-term
optimization of service quality, device energy consumption, and
expenses.

Index Terms—Cold start, deep reinforcement learning (DRL),
function offloading, prioritized action sampling, serverless edge
computing (SEC).

I. INTRODUCTION

ITH the deployment model of traditional Infrastructure
Was a Service (laaS) evolving toward Function
Computing or Function as a Service (FaaS) [1], serverless
computing breaks down complex applications into a set of
loosely coupled concise functions [serverless functions (SFs)].
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This allows for agile and flexible development, management,
and scaling of SFs, enabling elastic resource allocation based
on user demand. It allocates fine-grained computing resources
for function requests, such as the creation of container and
WebAssembly runtime environments. Serverless computing
has become the de facto standard for the next generation
of cloud computing [2]. However, when a system receives
a SF request, the required computational resources may be
uninitialized or in a sleep state, resulting in additional time for
resource allocation and environment initialization. The process
is known as the cold start [3], as reported in AWS Lambda,
Google Cloud Functions, and Azure Functions, the cold start
delays typically range from hundreds of milliseconds to several
seconds [4]. However, the execution delay of these simple SF
services (i.e., Web services, machine learning inference, and
IoT data processing) are typically less than 1 s, which contrasts
sharply with their cold start latency.

The stateless execution characteristic of serverless comput-
ing refers to the recycling and destruction of the runtime
environment created for a SFs request after returning the
computation results. To mitigate the high overhead of cold start
latency, the runtime environment is not immediately deleted.
Typically, runtime environments such as containers remain
active for 5 to 15 min after computation ends [5], allowing sub-
sequent function requests to reuse warm function instances and
execute with warm starts. Serverless edge computing (SEC)
overcomes the practical limitations of the cloud, reducing
network overhead and latency, enabling real-time services, and
improving Quality of Service (QoS) [6]. For instance, AWS
IoT Greengrass, Azure IoT Edge, and Google Cloud IoT Edge
adopt cross-edge and cloud paradigms to develop and deploy
IoT SFs. In SEC environments with low bandwidth and high
communication latency, the cold start problem severely hinders
system QoS [7]. It not only increases the total execution time
of latency-sensitive SF services but also reduces task suc-
cess rates. Existing serverless computing providers primarily
adopt two approaches to address the cold start problem: 1)
reducing cold start latency through lightweight techniques and
2) avoiding cold start occurrences by predictive methods. For
example, WebAssembly, which is closer to machine code, is
used to compress code package images to reduce cold start
latency [8]. Predictive methods, such as prewarming and reuse,
are employed to avoid cold starts [9], [10]. Vahidinia et al. [11]
proposed a joint optimization approach for prewarming and
reuse, determining the types of prewarmed containers needed
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and the optimal time to keep containers warm. Whether
through lightweight techniques that compress the cold start
process or predictive methods like prewarming and reuse,
neither approach alters the original SF request arrival patterns
at serverless computing nodes. These methods build upon
the existing SF request arrival patterns to make subsequent
predictions and optimize runtime environments. The effective-
ness of prewarming or caching reuse depends on the accuracy
of these predictions. Existing task offloading strategies alter
the arrival patterns of SFs requests to achieve multiobjective
optimization of latency, energy consumption, and cost, thereby
improving system QoS while enhancing resource utilization.
For example, an optimal joint offloading scheme based on
resource occupancy prediction [12] models the task offloading
decision process as a Markov decision process (MDP) and
employs reinforcement learning methods to optimize task
offloading decisions [13], [14]. These approaches aim to strike
a balance between service latency, task success rates, and
resource cost efficiency. However, they lack consideration of
the cold start problem.

For instance, Tang et al. [15] proposed a multiagent task
offloading algorithm based on Dueling Double Deep Recurrent
Networks to improve system QoS and resource utilization.
To alleviate the cold start problem, Zhao et al. [2] and
Chen et al. [16] modeled it as a container switching cost
problem, exploring task offloading strategies to optimize cold
start effectiveness. These methods introduce fixed cold start
delay costs to optimize task offloading strategies, which are
suitable for scenarios with relatively fixed function request
types and predictable request patterns. However, they are
less applicable in edge computing scenarios characterized
by diverse and dynamic SFs requests. Existing methods for
alleviating the cold start problem improve system service
quality but often neglect considerations of system resource
utilization. Meanwhile, task offloading strategies typically
model cold start latency as a high delay cost, optimizing
average latency and system resource utilization. These strate-
gies are suited for horizontal offloading modes but overlook
the heterogeneity of edge service nodes and their differences
in cold start latency. In the cloud-edge—end collaborative
serverless computing architecture, we systematically study
the task offloading problem and the cold start issue of
SEC. We introduce a vertical offloading mechanism and a
warm instance pool for SFs, creating different cold start
execution models for various service nodes. A cold-start-
aware distributed function offloading method based on deep
reinforcement learning (DRL) is proposed, using individual
SFs request tasks as the basic unit of SEC task offloading.
Each user’s function request executes an offloading strategy,
effectively addressing the challenges of traditional reinforce-
ment learning in handling high-dimensional state and action
spaces [17]. Moreover, a priority-based action sampling strat-
egy is introduced to accelerate the learning convergence of
agents [18].

Our method aims to enhance task success rates and system
service quality while reducing task cold start probabilities,
execution delays, energy consumption, and cost. Our main
contributions are as follows.
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1) We investigated the offloading method for SFs in a
SEC system. To reduce the frequency of cold starts
and efficiently utilize resources in the SEC distributed
computing environment, we developed a practical exe-
cution model based on a warm instance pool for SFs and
established a multilayer SEC system model comprising
cloud, edge, and end devices.

2) The multiuser, multitype function request offloading
problem is transformed into a multiobjective joint
optimization problem involving cold start frequency,
task execution delay, task energy consumption, and task
cost. To improve task success rates under constraints
of maximum task delay and resource energy consump-
tion, we proposed an action-priority-sampling Double
Dueling DQN algorithm. This algorithm identifies the
optimal task offloading strategy that minimizes cold start
frequency, maximizes task success rates, and reduces
energy consumption and cost for user devices while
accelerating the learning convergence of agents.

3) We conducted extensive simulation experiments to eval-
uate the performance of the proposed algorithm. The
simulation results demonstrate that our approach signifi-
cantly accelerates the convergence speed of DRL agents.
Compared to standard baseline algorithms, our method
achieves superior performance in improving task success
rates, reducing system energy consumption, lowering
task costs, and minimizing task cold start frequency.

The remainder of this article is organized as follows. In
Section II, we review related work. Section III presents
the problem scenario and the modeling process. Section IV
introduces the algorithm design. Section V describes our
simulation experiments and evaluation. Finally, Section VI
concludes this article.

II. RELATED WORK

Methods for Alleviating Cold Starts in Serverless
Computing: Serverless computing refers to a model where
users are not required to manage infrastructure servers and
can focus solely on code and business logic development. The
allocation and elastic scaling of computational resources are
dynamically managed by cloud service providers on-demand.
Based on the characteristics of serverless computing, cloud
providers must instantiate a specific runtime environment for
the first invocation of a function request. This process is
known as the cold start process [9].

Methods for alleviating the cold start problem in serverless
computing can be categorized into two main approaches. The
first approach does not avoid the occurrence of cold starts but
focuses on reducing cold start latency to improve the execution
of latency-sensitive functions. For example, the WebAssembly
runtime approach is used to initialize the runtime environment
at near machine-code speeds [19]. Wang et al. [20] designed
a highly scalable middleware, FaaSNet, to reduce cold start
latency. The second approach alleviates cold starts by pre-
warming functions and reusing function instances, ensuring
that requests are executed as much as possible via warm starts.
Prewarming refers to the practice of proactively loading the
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runtime environment before the arrival of function requests,
thereby avoiding cold start issues upon request arrival. Reusing
means that after the function execution is completed, the run-
time environment is not immediately destroyed, but is retained
for a certain period (typically 5 to 15 min), allowing subse-
quent function requests to reuse the existing warm instances.
For example, Zhao et al. [2] and Golec et al. [21] investigated
the correlation between the occurrence of cold starts and
the number of requests sent to servers. Dehury et al. [22]
examines the percentage of user requests handled by fog and
cloud, maintaining function instance warmth by optimizing
the number of requests allocated to different service nodes.
Qiao et al. [23] improved prewarming rates by solving near-
optimal cache replacement strategies with machine learning.
Fuerst and Sharma [10] treated warm function containers
as cache objects, while Chiang et al. [24] modeled the
container warming control problem as a MDP. COCOA [25]
explores the correlation between cold starts and time-to-
live (TTL) caching, optimizing system resource consumption
and cold start frequency by adjusting container lifetimes.
Vahidinia et al. [11] leveraged reinforcement learning to
determine the optimal time for maintaining container warmth
and use long short-term memory (LSTM) to identify required
prewarmed container types. Their joint optimization method
for prewarming and reuse mitigates cold starts. However,
prewarming or reuse methods do not alter the arrival pattern
of task requests at service nodes. Instead, these methods
observe task request patterns to prewarm, extend, or shorten
the lifecycle of function instances for reuse. The effectiveness
of prewarming or caching reuse relies on prediction accuracy.
Barcelona-Pons et al. [26] explored sharing stateful java
virtual machine (JVM) instances across functions. However,
designing a universal runtime image remains challenging and
can result in cumbersome runtime environments.

Offloading Strategies in SEC: Due to the resource constraints
of edge nodes, lightweight platform frameworks such as
TinyFaaS [27] and UnFaaSener [28] are designed to reduce
system resource consumption. Pandey and Kwon [29] predicted
and reduces excessive memory demands of SFs. Work in [15]
proposes multiagent algorithms to address task scheduling
issues among noncooperative edge nodes. Lu et al. [30]
introduced an algorithm based on deep deterministic policy
gradient (DDPG) to enhance user experience quality, mitigating
instability and slow convergence in task offloading within edge
computing. To improve resource utilization, Russo et al. [4],
[31] optimized resource costs across edge and cloud paradigms
using horizontal and vertical offloading strategies. Yao et al. [32]
employed a distributed reinforcement learning framework with
cloud training and edge execution to address the challenges
of sample diversity and high exploration costs in offloading
strategies for SEC. Mampage et al. [33] designed heuristic
algorithms for deadline-sensitive tasks, aiming to minimize
provider costs associated with maintaining cloud infrastructure.
Bilal ety al. [34] separated memory and CPU allocation through
analytical models. Tang et al. [35] utilized partially observable
MDP (POMDP) and decentralized POMDP approaches to
minimize [oT device energy consumption while meeting task
processing latency requirements. Their goal is to efficiently
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utilize system resources on SEC platforms, reduce average task
latency and energy consumption, but they overlook the impact
of cold start issues.

To address the latency of executing latency-sensitive func-
tions, in [36], a multiagent DDPG (MADDPG) method is
proposed to enable efficient task offloading and resource
allocation for IoT AR application requests. Xu et al. [37]
presented an effective heuristic online learning-driven algo-
rithm to address stateful serverless application deployment
with function dependencies. Suresh et al. [38] classified
incoming SFs requests based on resource consumption and
lifecycle patterns, optimizing container placement both within
and across containers. To optimize specific SFs offloading
strategies, Xu et al. [39] adopted different memory usage
patterns for containers at various stages to balance memory
shortages and cold start issues. Lou et al. [40] determined the
execution priority of SFs based on execution time, cold start
time, and the number of queued requests. Chen et al. [16]
and Kim et al. [41] modeled the cold start problem as a
container switching cost problem, utilizing an integer linear
programming model to optimize container switching, commu-
nication, and runtime costs for function request offloading. Li
et al. [42] proposed a new hybrid offloading algorithm within
a cloud-edge—end three-tier serverless framework, employ-
ing a greedy approach to reduce average latency. Wang et
al. [43] introduced the coefficient of variation (CV) to measure
irregularities in function invocations and uses reinforcement
learning to resolve issues related to redundant containers or
code prefetching. Agarwal et al. [44] reduced the frequency of
cold starts for specific workloads by determining the optimal
number of function instances in advance through reinforce-
ment learning. These offloading and scheduling strategies to
mitigate cold starts primarily rely on quantitative analyzes of
cold start latency to improve service quality. However, they
do not further alleviate cold starts through function instance
reuse or optimize resource utilization.

From Table I, it can be observed that existing works on SEC
primarily focus on the design of architectures, platforms, and
models, aiming to optimize certain system performance met-
rics such as latency, energy consumption, and cost. However,
these optimization approaches lack consideration for the
cold start latency of tasks in SEC. Additionally, they fail
to fully leverage the distributed nature of edge computing
and often overlook long-term performance optimization. This
article addresses these issues by establishing a cold-start-
aware multiagent DRL offloading model. The proposed model
improves the execution success rate and service quality of
latency-sensitive SFs requests while reducing task latency,
energy consumption, and cost. Furthermore, it balances the
tradeoffs between cold start frequency and resource utilization
costs in SEC.

III. SYSTEM MODEL

In this section, the problem scenarios and problem modeling
of cold-start-aware cloud—edge collaborative computing are
outlined. The challenges faced by traditional cold-start miti-
gation methods and SFs offloading strategies are summarized.
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TABLE I
SUMMARY OF EXISTING SERVERLESS COMPUTING WORKS

Problem Cold Start Optimization
Ref. Solutions Optimization Parameters Limitations
Challenges Consi Goals
onsidered
[32] 1.Sample diversity Experience No consider 1.Average latency 1.Fixed cold 1.No SF reuse
2.High exploration Share in DRL 2.Convergence speed start latency 2.No vertical
in cloud-edge 2.The delay of offloading
max tolerable
[27] [28] Lightweight edge Pub/Sub, No consider 1.Delay 1.Code size of SF, Longer livetime
serverless platform CoAP 2.Cost 2.Invocation cost container
[2] [21] High cold start Machine Considered Reduce cold 1.SF requests Num Higher request to
frequency in edge learning start frequency 2.Cold start latency keep SF warm
[45] [46]  Dynamic task MQTT No consider 1.Latency 1.Task dependencies No vertical off-
offloading in cloud Apache NiFi 2.Security 2.Communication loading to further
topology reduce latency
[10] [25]  Mitigating cold Caching,reuse, Considered 1.Cold start 1.Cache time No offloading
[24] [11]  start issues in pre-warming frequency 2.Cold start latency strategy
[41] [23]  cloud-edge 2.Resource utilization 3.Tolerable latency
[44]
[20] Reducing cold WebAssembly, Considered Shorten the cold 1.Cold start latency No optimize
[19] start latency container start process 2.Network trans. cold start occur
in cloud configuration
[15] Task offloading DQN No consider 1.Service quality 1.Cold start latency Fixed cold
in edge 2 Resource utilization 2.Processing capacity  start latency
3.Network trans
[31] [4] Framework across Real-time migrate, No consider 1.Task offloading 1.Response time, Supports one
edge and cloud request queues 2.Migration ways 2.Request throughput  type SF
[16] Request dispatch, Integer linear No consider 1.Latency cost, 1.Cold start cost Fixed cold start
container cache programming 2.0Operating cost 2.Edge resources
in edge 3.Trans. cost
[22] SF deployment DRL No consider Percentage of requests  1.User priority, Fixed cold start
in cloud-fog in fog 2.Distance,3.Latency
4.Resource available
[42] SF offloading in Multi-hop No consider Min execution 1.Average latency Average cold
multi-edge to cloud communication latency 2.Edge resources start in edge
3.Device resources and cloud
[40] Cold start latency Polynomial time Considered Min execution 1.Average latency Fixed cold start
request blocking schedule and enhanced latency 2.Edge resources with horizontal
in cloud-edge shortest 3.bandwidth demand  offloading
[our] Cold start frequency, SF warming pool, Considered 1.Reduce cold 1.Max task latency Maximize the

Multi-SFs offloading
with Multi-users
in Cloud-Edge-End

SF Priority sched
-uling by DQN,
Importance Samp
-ling

success rate of
all task types,
no horizontal
offloading

start frequency,
2.Enhance QoS
3.Resource utilization

2.All layers resource
3.Network trans.
4.SF priority

By defining multiple control decisions for three types (cloud,
edge) and further characterizing the total latency, cold-start
frequency, total energy consumption, and cost models in SFs
offloading, the long-term multiobjective optimization problem
is formulated as an MDP problem. Table II summarizes the
main symbols used in this article.

A. Problem Scenario

This article considers a SEC network, which consists of
intelligent industrial IoT clients, edge computing nodes, and
a cloud center as the three main components. As shown in
Fig. 1, in the SEC environment, there are N IoT devices N =
{1,2,3,...,N} and M edge servers M = {1,2,3,..., M}
equipped. IoT devices are connected to edge servers via
wireless links, and edge servers are connected to the cloud
server C through the core network. Each IoT device has
specific computing capabilities. Task requests are generated
by intelligent industrial IoT devices, such as SF tasks for
resizing, grayscale adjustment, and detection in cloud—edge
collaborative reasoning [47]. Specifically, maintenance of SF

code warm pools on various service nodes is implemented to
guide whether SF request are executed in a cold or warm start
manner. The survival time of each SF instance in the code
pool depends on the corresponding function type.

In this scenario, each IoT device is a user, and each user
decides the offloading location for its function requests. Cost
calculations are made from the perspective of IoT users,
including energy consumption and monetary costs.

Energy Consumption: This includes the computational
energy consumption incurred when the task is executed on
IoT devices and the transmission energy consumption incurred
when the task is offloaded to edge or cloud servers.

Monetary Costs: This includes the request and computation
prices when tasks are processed on edge or cloud servers.
Tasks computed locally on IoT devices incur no monetary
costs. The monetary cost of a task is proportional to the
computation time on the server nodes.

Specifically, when SF requests are executed on IoT devices,
they exclusively utilize the devices’ resources, incurring only
computational resource consumption without monetary costs.
When SF requests are executed on edge nodes, they share
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TABLE II

LIST OF NOTATIONS
Symbol Meaning
N the set of IIoTEs
M the set of edge servers
C Cloud computing center
Rfli () The i-th request of device n at timeslot ¢
B,{i () The data size of task Rﬂi ()
Df” () The CPU cycles needed of task Rf” ()
T,J:i () Maximum tolerable latency of task Rf;i ()
F Set of serverless functions
pooly,, Device n instance pools
poolg,, Edge server m instance pools
poolc Cloud instance pools
an,; (t) Action taken of task Rf” (t)
Tedge (t) Maximum transmission rate n to edge z
Teloud(t) Maximum transmission rate n to cloud C
Py (t) Transmission power of device n at timeslot ¢
Pricemg Computational price per unit time at edge x
Requesteqge(t) Price for requesting edge = computation
Pricec Service price per unit time at cloud C'
Requestcioyuq(t)  Price for requesting cloud computation
Tiocal (t) The total delay of task R,J;i (t) in local
Tedge(t) The total delay of task R,fli (t) in edge
Teioud(t) The total delay of task R{; (t) in cloud

compute (T The calculate energy consumption
Etran(t) The transmite energy consumption
Twait(t) Waiting transmite and resource allocate
Tiran(t) The transmission delay of task Rf,, ()
Tstart (t) The cold start delay of task Rfli ()
Teompute(t) The computation delay of task R,J;i ()
T, (t) Total latency of the task R,fli (t) with an, (t)
En, (t) Total energy of the task Rfli (t)
My, (t) The total monetary of task R,fli (t)
The energy coefficient

s State vector representing the SEC observation

the computational resources of the edge node, resulting in
lower transmission latency and energy consumption but higher
monetary costs. When SF requests are executed in the cloud
computing center, they utilize larger computational resources
exclusively, incurring relatively lower monetary costs, and
results in the highest transmission latency and energy con-
sumption. Within the same service node, the processing
order of SF requests follows a first-come-first-served (FCFES)
principle.

Typically, the SF code pool only needs to store a single
image of each type of SF. If no corresponding requests are
made within the SF’s keep-alive time, its function code is
removed from the SF code pool, adhering to the elasticity
principle of serverless services. When an SF request is found
in the code pool, its initialization time is negligible, and the
request is processed as a warm start. If the SF request misses
in the code pool, the SF image code must be fetched from the
remote image repository, resulting in a cold start. The cold
start cost of each type of function depends on the size of its
image code and the network resource environment.

To mitigate the frequency of cold starts for heterogeneous
SEC SF requests, a multiagent cold-start-aware task offloading
strategy is designed. This strategy not only reduces the
frequency of cold starts but also lowers the processing time
of SF requests, improving service quality while avoiding
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Fig. 1. Example of SF request offloading in IIoT with cloud—edge
collaborative SEC. During each time period, IoT clients generate tasks, and
the decision agent deployed on each device evaluates the attributes of the
tasks and the current environmental conditions (e.g., the number of tasks for
various SF requests in local, edge, and cloud nodes, the total number of all
task requests, and the lifecycle of the SF code pool). Based on this evaluation,
the agent makes decisions regarding task offloading and resource allocation.
The agent then issues these offloading and resource allocation instructions,
which are executed by the respective devices and servers.

excessive consumption of system resources and monetary
costs. Next, we formulate a joint optimization model with
multiple decision variables, considering cold-start awareness,
delay cost, energy consumption, and monetary cost.

B. Task Model

Time is divided into equally spaced discrete time slots
{1,2,3,...,T}, with a fixed time interval T in each time slot.
Intelligent IoT devices generate an application request at the
beginning of each time slot with a certain probability. The IoT
client decomposes this task into i independent SF computation
tasks, which are represented as R};i (1 = {BZ,. 0, D’;i 0, rﬁi 0},
where Rﬁi (t) denotes the ith request task of device n at time
slot ¢, belonging to function f, B’:l,. (?) represents the task data
size, Dfl,.(t) indicates the number of CPU cycles required
to complete task R’;li(t), and n’:i(t) signifies the maximum
tolerable latency for task completion (deciding the success of
task execution), which is one of the main constraints in the
optimization problem. Here, f € F = {1,2, ..., F}, where F
represents the function set of the SEC network. Due to the
resource constraints of the distributed server infrastructure, the
sizes of pools in IoT device n, edge m, and cloud instance
C are denoted as pool; , poolg , pools, where pool, <
poolg < poolc.

When task Rﬁi (r) arrives, a decision on task
offloading a,,(f) needs to be made, represented
as  ap (1) = {ann, Gum1 s Gnm2, - - ., Gnmm, Ane},  Where

Qnns Qs um2s - - - > Gomms dpe € (0, 1), and ayy + apmn +
anm2 + -+ - + anmm + ane = 1. For example, when a,, = 1, all
others are 0, indicating that this task will be executed locally.
When ay,,1 (f) = 1, with all others being 0, this task will be
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offloaded to edge server 1, and so on. This approach ensures
that tasks are not migrated to devices or servers at the same
hierarchical level and avoids repeated offloading.

C. Transmission Model

Considering the transmission model of SFs requests in
the actual industrial IoT environment, as shown in Fig. 1,
where N IoT devices are all connected to the edge base
station via wireless channels, the maximum uplink rate from
industrial IoT device n to edge server x at time slot ¢ is
given by: redge(t) = W, () log(1 + [Pn([)hedge(t)/02 + Nedge])
here, W, (f) represents the channel bandwidth, P,(f) denotes
the transmission power allocated at time slot f, /fedge(?)
signifies the wireless channel gain from end device n to edge
server, o2 is the background noise variance, and Negge =
Do N #n Pp()hedge (1) represents the interference signal-to-
noise ratio (SINR). Similarly, r¢joud(#) denotes the fixed uplink
rate from IoT device n to the cloud server. The transmission
delay of task Rf,i(t) from end device n to edge or cloud server
at time slot 7 can be calculated as follows:

By o
’ nmx —
Toan(t) = | " (M
m, if Ape = 1.

The transmission energy consumption Ei,,(#) of task R’;i (1) is
represented as

Etran(f) = P,,(t) . Ttran(t)- (2)

D. Computing Model

Total delay in SF computation includes waiting transmission
delay, transmission delay, waiting computation delay, cold
start delay, and computation delay. Specifically, when an
SF request is offloaded to an IoT device for computation,
both waiting transmission delay and transmission delay are 0O
(Tixan () = 0). When an SF request is executed on a compute
node using warm start, cold start delay is 0. Typically, in SEC
computation, the returned data volume of SF requests is very
small, hence download delay for the results is not considered.

Total energy consumption of tasks primarily refers to the
battery energy consumption of IoT devices, including energy
consumption for transmitting SF tasks to other service nodes
and local computation. The transmission energy consumption
for offloading SF requests to the cloud is greater than offload-
ing to the edge, but less than the energy consumption generated
when processing locally.

In SEC, tasks incur two monetary costs when computed on
edge or cloud servers, which are the request price for edge
or cloud computation, and the computation cost for edge or
cloud computation. Generally, the price for requesting edge
computation and the unit computation price over time are
higher than those of cloud servers, but the transmission delay
is lower. The closer the computation, the more expensive the
computation price, the smaller the computing capacity, and the
lower the transmission delay.

1) Local Computing Model: In Industrial Internet of
Things (IloT), IoT devices are equipped with more powerful
chips and batteries, enabling them to handle computational
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tasks akin to a slightly weaker server. Therefore, the SF task
R,’;. (1) can be offloaded to the local IoT device n, with T,;(t)
representing the total delay when offloaded to device n for
computation, expressed as

Tocal (1) = Twait (1) + Tstart (7) + Tcompute(l) (3)

here, Ty,it(f) denotes the delay for resource allocation,
Tsuart(f) represents the cold start delay of the function
instance, and Tcompute(?) is the computation delay. Ty () =
;—ls,f;, cold start
0, warm start
the SF f, and HP,, is the maximum load for device n to obtain
the resource package. Tcompute(t) = [DQI. 0 /fa(®)], where f,(¢)
is the processing capability of device n. The task transmission
energy consumption Ey4,(?) is 0. And the energy consumption
calculation is given by

Eiocal (1) = Ecompute(®) = ¢ x (o, )’ x DL () (4

, where FSy is the resource package size of

here, ¢ = 1072 denotes the energy coefficient, which
typically depends on the hardware platform. It characterizes
the energy consumption per unit computational workload and
per unit squared CPU frequency [18].

2) Edge Computing Model: In the offloading decision
ay, (1), where aymx = 1 and all others are 0, indicating that the
SF task R’;. (7) offloads to the edge server x for execution, the
total latency for its execution is given by

Tedge () = Tyan(®) + Twait(®) + Tseart (1) + Tcompute ® O

here, Tyaii(f) represents the waiting transmission latency and
the waiting time for computing resources, Tian(f) represents

E
. qp—. cold start
the transmission latency, T (f) = edge
, warm start
represents the cold start delay, and Teompue(®) =

[D’,:,.(t) /fedge(1)] represents the computation latency in edge
server. HPegge is the maximum load for edge server to obtain
the SF code from remote global registry, and fegee(?) is the
computation resource allocated by edge server x to tasks from
IoT device n, satisfying ZQ]:] fedge(®) < Fpy, where Fpy
denotes the total computing capacity of edge server x.

The total energy consumption for task R’:,i(t) executed on
edge server x is Eeqge(f)

Eedge (t) = Egan () + Ecompute ®. (6)
And the total monetary expenditure is Medge (?)
Megge (1) = Requestedge(t) + Pricep X Teompute(t)  (7)

here, Price,,, is the computational price per unit time for edge
server Xx.

3) Cloud Computing Model: Similar to edge computing,
when the vector ay, (f) has anme = 1 and all other elements are
0, task Rﬁi (v) is offloaded and executed at a cloud computing
center. Considering that the cloud server is capable of handling
various tasks and is equipped with sufficient network and
computing resources, tasks arriving at the cloud computing
center do not need to wait for other tasks to execute. They can
start immediately in a cold or warm start mode after arriving
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at the cloud. The total processing time delay Tcjouq(f) for
offloading tasks to the cloud is given by

B, (1)

Tcloud(t) = Ttran(t) + Twait(t) + Tstart(t) + (8)
Teloud (7)
FS¢/HP(cloud)], I1d start
where Tsiare () = [FSy/HP(cloud)],  cold sta represents
0, warm start

the cold start time at the cloud computing center, HP(cloud)
represents the maximum load at which the cloud computing
center acquires the SF code. The energy consumption E¢joud(?)
and monetary expenditure M jouq(¢) for executing task R’:,l. 6]
at the cloud computing center are given by

Ecioud(t) = Pn(#) X Tiran(?) )
Meioud (1) = Request jq,q(2) + Price, x Tcompute(t) (10)

where Price. is the price for cloud server services per unit
time.

E. Problem Formulation

In the SEC, the SFs may need to run on the local IoT
device due to long waiting times to begin task processing
within the maximum delay possible. The SFs may also
need to be offloaded to cloud or edge servers due to long
waits for local resource allocation. However, cloud servers
are distant and cost-effective, while edge servers are closer
but expensive. Specifically, the long cold start initialization
operation of the SFs significantly reduces the QoS the SEC
system. Specifically, the prolonged cold start initialization of
the SFs significantly degrades the QoS in the SEC system.
Therefore, achieving cold-start awareness can mitigate the cold
start issue from the source of SFs requests, saving resource
consumption and cost expenses. The goal of this article is to
consider the frequency of cold starts of SFs in the resource-
constrained SEC environment and achieve joint optimization
of success rate, total delay, total energy consumption, and total
monetary expenditure.

The total delay T}, (¢), total energy consumption £, (¢), and
total monetary expenditure M,,(f) of task R);li () under SEC
computation are represented as follows:

M

Tn,- (t) = |:Tlocal (t)a Z Tedge(t)a Téloud (t):|
x=1

T

(1)

M
: [ann(t), > anmx(o), anC(t)}

x=1

M
EWP{%MmZ&mW&mm]

x=1

M T
: [ann(z), > amx(@), anc(t)i| (12)

x=1

M
A%@=[Q2MM@&Mmmﬂ

x=1

M T
: [ann(t), Zanmx(t),anc(t):| ) (13)

x=1
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The cold start delay of task R’,;. (#) in SEC system is Tiart (1),
if Tgare(f) > 0, it means that task R,‘li (1) is executed in a cold
start manner under offloading policy ay,(¢). Otherwise, SFs
request Rﬁi (¢) is executed in a warm start manner.

In SEC system, due to the waiting for network bandwidth
resources and differences in allocated computing resources
for tasks, the actual execution time of a task may exceed
the maximum tolerated time. Therefore, using Success,, (f) to
denote whether a task meets the completion condition under
the maximum delay

1, Tu(t) < T (0)

14
0, T, () > 1. 14

Successy, () =

If Successy,(f) = 1, it signifies that task R,f@(t) is success-
fully completed within the maximum tolerated delay rﬁi ®).
Otherwise, SFs request R’:,l. (#) did not successfully execute.
The more SFs requests task with cold start in SEC, the
greater the total delay of tasks. Therefore, implementing cold-
start aware offloading strategies can reduce the frequency of
cold start in SEC and also reduce the overall system cost.
Transforming the offloading problem of multiple SFs into a
joint optimization problem, the problem can be defined as

P : Minimize (ZIT=1 >t 2oy Ty (0 and
Y Y YR Eny () and
Yormt Yot Sty My, (l))
st. Cl: Ty () < 7h(0)

C2 : apy + a1 + A2 + -+ - + apmm + @pe =1
T N R

C3: ) % > Ey() <Ea

t=1 n=1 i=1

15)

Here, C1 denotes the total completion delay constraints of
the delay-sensitive tasks, and C2 denotes that each task can
only be offloaded to one computing node. C3 means the energy
consumption of tasks does not exceed the device’s battery
capacity.

IV. DESIGN OF CSODQN

The objective of this article is to address the cold start
problem in SEC. Unlike methods such as preheating and
caching used to mitigate cold starts, this approach jointly
optimizes the cold start tasks with resource consumption and
computation costs as an offloading problem, aiming to achieve
a tradeoff between cold starts and resource consumption. The
joint optimization problem P of function offloading is modeled
as a MDP. In the SEC, as the number of IoT devices and edge
devices increases, the state and action spaces of the MDP grow
exponentially, making it difficult to solve the optimization
problem in polynomial time. The capability of deep learning to
handle high-dimensional state spaces and the strong learning
ability of reinforcement learning, a DRL-based algorithm is
designed for computation offloading and resource allocation
to maximize the expected reward.
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Learning and sampling process of CSODQN. During CSODQN training, the agent collects system resource as the computing ability of edge

server,then input of D3QN, and the network output is Q-value. The agent performs the corresponding action, receives the reward, and the system state is
updated to the next state. The agent stores the collected MDP sets into the priority experience replay buffer, and selects training samples according to the

sampling probability to train the D3QN network repeatedly.

A. MDP

Due to the complexity of the heterogeneous cloud—edge
collaborative SEC environment, it is nearly impossible to fully
observe all state transitions. Therefore, the SEC computing
environment is modeled as an MDP with internal state tran-
sition probabilities p. An MDP consists of a 5-tuple M =
{S,A, p, R, y}, where S represents the state space, A represents
the action space, p is the state transition probability, R is
the reward function, and y is the discount factor for future
rewards. At the beginning of each time slot 7, when task R’,C,,. 6]
arrives, the decision maker perceives the current environment
state sy, (f) € S and executes an action ay,(f) € A. After the
action ay,(f) is completed, the system state is updated to the
next state s,,(f + 1), and the environment provides a reward
ry;(t) € R to the agent. The details of the MDP we designed
are as follows.

1) State Space: At the beginning of each time slot ¢, the
agent collects information about the current SEC environ-
ment. The system state is represented as a S-tuple S(r) =
{R(®), Fp(t), Fi(2), Fe(2), B(1)}, where R(¢) represents the task
profile to be executed, F,(f) represents the computation
resources of the terminal device, F,,(¢) represents the com-
putation resources of the edge server, F.(f) represents the
computation resources of the cloud center, and B(f) represents
the remaining bandwidth resources of the wireless channel.
S(1) is the state of the environment at time ¢ before the task
R(t) decision is made.

2) Action Space: The action space represents the
number of offloaded work nodes. The agent, by observ-
ing the current state, executes an action a,(?)
{ann, Gum1, Apm2, - - -, Gomm, dne ), as described in Section I1I-B.

3) Reward: The objective is to complete the task execution
within the maximum delay, with the reward defined as the
positive reward for task execution success and the penalty
for execution failure, as well as the penalty for the system
cost incurred during task execution. By adjusting the weights
of the execution outcome state rewards (RSuccess,,l.’ RFai]edn’_)
and Sys_cost, is the system cost, the final reward function

is designed. This aims to achieve a higher success rate with
minimal system cost consumption, thus improving QoS while
maximizing the utilization of system costs

Sys_costni =a X Ty)+ B x Ey(@t)+y x M, () (16)

where o, 8, and y are coefficients representing the contribu-
tion of total task delay, total energy consumption, and total
monetary expenditure to the system cost

ol
RSuccessni =axe ™Y 4w X fid (17)
RFailed,,l. = —a x log(fia) x RSuccessni
_ Ty
—bxe w®
—c X log(fig + failed_state) (18)

where a, b, ¢, w, and w are coefficients that control the rewards
for lower-priority SFs request task types, ensuring that their
absolute values do not exceed those for higher-priority SFs
request task types. fig represents the priority of the current task
type, with a higher fig indicating a higher priority task type.
The final reward obtained by task R],C,,. (?) is calculated as

reward,, (1) = e X (Rsuccessni x Successy, (1)

+(1 — Successy, (1)) x RFailedni)

—f x Sys_cost,,. (19)

Thus, the cumulative reward for reinforcement learning
is Reward = Zszl Zf?:l reward,, (). The joint optimization
problem P of SFs request offloading is transformed into the
calculation of Max(Reward).

B. CSODON Model

This section describes the design of a multiagent DRL-
based algorithm to address the proposed cold-start perceivable
task scheduling optimization problem. In our work, it is
suitable to use the DQN architecture to learn the optimal
task scheduling decisions for SEC. As shown in Fig. 2,
based on the DQN architecture, we design an improved
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multiagent task scheduling algorithm, cold-start-aware offload-
ing by double-dueling-DQN (CSODQN), based on the Dueling
DDQN network. Below, we introduce the method of using
the multiagent CSODQN approach to solve the cold-start
perceivable task offloading problem.

The network takes the SEC state vector s as input. It first
passes through two fully connected layers with 64 neurons
each, both activated by ReLU functions. Then, the network
splits into two separate branches: 1) a value stream and 2) an
advantage stream. The value stream outputs a scalar V(s)
through a fully connected layer with linear activation, while
the advantage stream outputs an action-wise vector A(s, a)
through another fully connected layer with linear activation.
The final Q-value is computed by combining these two streams
as shown in (20)

Q(Sni ®, An; (t)) = V(s”i(t)) +A(S”i o, An; ®; 9)
— Z A(Sni(f), a/; Qmain)/lAl'

a'€ay(t)

5(Snl. ), Ap; (t)) = reward,,l. ® — Q(Sn,- @, Ap; (®); 0) +vy
.Q(sm (t+1),arg max O(spy (t+ 1), a’; 9main)>-
(21)

(20)

To ensure a constraint with an expected value of 0 and thus
improve the stability of the Q-value, the equation is modified
by subtracting the average value for each A:Q(s,a) =
V(s) + (A(s,a) —[>_, A(s,d)/|All). Further to enhance the
accuracy of the Q-value estimation and the stability of the
learning process, the concept of Double DQN is introduced.
We use a Double Dueling DQN network for training by adding
a target network to determine the action value for Q-value
computation. This reduces the overestimation bias, improving
the accuracy and stability of the Q-value, as shown in (20), 6
and Op,in represent the parameters of the online network and
the target network.

In this article, multiple agents run simultaneously in a
single SEC environment, and their experiences are not shared
publicly. Therefore, we adopt centralized prioritized replay,
where higher-priority experiences are more likely to be sam-
pled. Samples with significant differences between predicted
values and TD targets are prioritized because a large TD error
8(sn; (1), an, (1)) indicates that more learning is needed, then
represent the priority of each experience p(su, (1), an, (1)) =
|8(snl. (1), ay, (t))l + e, a small constant e ensures that no
experience has a priority of 0.

As shown in Algorithm 1, the agent executes the current
task’s offloading decision on SEC service nodes. The function
instance reuse in the SF code pool determines whether the
function is executed via a warm start or a cold start. The
algorithm returns the state before and after the task execution,
along with the reward advantage obtained. The experience
storage consists of {S;, As, Riy1, Si+1, pt}-

Specifically, we implement a container reuse mechanism in
the SEC service nodes, where function instances are cached
in a container pool. Upon receiving a task, the system first
checks the availability and state of containers in the pool. If a
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Algorithm 1 Cold Start Execution Model in SEC

1: Input: State S at time slot 7, action A for the current task,
maximum tolerable delay 7.

2: Output: Final state S’ after task execution and reward
obtained.

3:if A in local IIoT :

4:  Calculate waiting time #; in the local execution queue.
50 ft+n=>T:

6: Return state at time 7 + #; and failure penalty.

7:  Calculate cold-start cost cold at time f + t1; replace the
earli-

est container instance if the pool is full.

8 ifr+ty+cold>T:

9: Return state at time ¢ + 1 + cold and failure penalty.
10:  Calculate runtime run for local task execution.

11: if T — (t+ 1t + cold) < run :

12: Return state at time ¢ 4+ 7 and failure penalty.

13:  Return state at time t + #; + cold + run and success
reward.

14: if A in remote server :

15:  Calculate waiting time 7, in the local transmission
queue.

16: ifr+16,>T:

17: Return state at time 7 + #, and failure penalty.

18:  Calculate transmission time fran to the server.

19: iftr+n+tran>T :

20: Return state at time ¢+ > + tran and failure penalty.
21: Calculate waiting time #4 in the server’s execution queue.
22: ift+tmr+tran+1>T :

23: Return state at time ¢ + t, + tran + t4 and failure
penalty.

24:  Calculate cold-start cost cold at time t + tp + tran + t4;
replace the earliest instance if the pool is full.

25 ift+tm+tran+t4+cold >T :

26: Return state at time ¢ + t + tran + t4 + cold, failure
penalty.

27: Calculate runtime run for task execution on the server.
28: i T—(t+1tr+tran+1t4 + cold) < run :

29: Return state at time ¢+ 7 and penalty for failure.
30: Return state at time t + tp + tran + t4 + cold + run
and reward for success.

suitable container instance exists, the task is scheduled directly
to the existing container, enabling a warm start. Otherwise, a
new container is initialized, resulting in a cold start. This reuse
mechanism not only reduces task execution latency but also
provides state feedback for the agent to make cold-start-aware
offloading decisions.

After assigning each experience a priority, apply a random-
ized priority, which calculates the probability of sampling a
given sample based on its priority. The probability of sampling
the tth sample is given by

P50, (1), an (1)) = p(sn (0, an,(0)" /> Pl
k

| B
> . (23)
N - P(sy; (1), an, (1))

(22)

@ (sn, (1), an; (D) = (
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Algorithm 2 Cold-Start-Aware Offloading Algorithm With
CSODQN

1: Initialize: state S, action A, and PER memory N, at the
beginning

of t=0

2: for each episode do

Load task R{u (¢) from datasets.

4:  Reset the IIoT system environment.

5:  while True do
6

7

w

Get ay, (t) from A and s, (f).
Execute ay, (), observe s,,(t+1), and obtain r,, (¢) with
algorithm 1.

8: Store (Sn,- @), an; (1), 1p; (1), 8y, (t + 1)) into the priori-
tized

experience replay buffer.

9: Obtain a batch of samples from the buffer N based on

Equation (22) and (23).
10:  Calculate Q(s, (1), an, (1)) with Equation (20).

11: if time slot t is the last slot
12: break

13: end if

14:  end while

15: end for

In (22), if 8 = 0 corresponds to uniform random sampling,
and 0 = 1 selects the experience with the highest priority.
Randomized priority experience sampling, the sampling prob-
ability distribution is altered, which results in the decision
engine developing a preference for high-priority actions, but
also allowing experiences with lower priorities to be sampled.
However, high-priority samples introduce bias, leading to
the risk of overfitting. To correct this bias, in (23), we
use importance sampling (IS) weights @; when updating the
QO-network. The weight w, adjusts the contribution of each
sample to the loss function, N is the size of the prioritized
experience replay buffer. At the beginning of training, g is set
to a small value (e.g., 0.0005) and gradually increases toward
1, allowing for better bias correction during the later stages of
training. The details of the CSODQN-based cold-start-aware
offloading and resource allocation algorithm are presented in
Algorithm 2.

V. PERFORMANCE EVALUATION

The advantages of the CSODQN algorithm were verified by
comparing it with other advanced baselines, including DQN,
DDQN, Double Dueling DQN-based D3DQN, earliest start
first offloading (ESFO), random offloading decision (Random),
offloading only at the edge (Edge0), and offloading only to
the cloud (Cloud). To validate the superiority of the CSODQN
algorithm, five simulation experiments were conducted. In
each experiment, each IoT device generates a task request in
each time slot with different task arrival rate. There are 10
types of tasks and a total of 10000 time slots. To avoid extreme
cases that may arise from heuristic algorithms and to ensure
the fairness of the experiments, both the ESFO and random
offloading heuristic algorithms adopt the same task arrival rate
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and environment initialization procedures as the reinforcement
learning algorithms. For the random offloading algorithm, we
perform repeated experiments and use the average result as
the final performance metric.

A. Experimental Environment

We consider a cloud computing center in an industrial IoT
environment. In this experiment, we consider a scenario with
50 industrial IoT devices, 6 edge servers, and 1 cloud server.
All neural networks in the DRL algorithms are four-layer
networks, consisting of an input layer, an output layer, and
two hidden layers.

B. Parameter Setting

The DRL method in this article is trained online. We
need to analyze the effect of different DRL hyperparameter
settings (such as learning rate, discount factor and batch size)
on the performance of CSODQN. Based on this, the DRL
hyperparameters are determined. The parameter settings of this
experiment are shown in Table III.

1) Effect of Learning Rate on Convergence of the Reward:
Fig. 3(a) illustrates the impact of the learning rate on the
reward function’s convergence performance in the deep learn-
ing process of the CSODQN algorithm. The learning rates are
set to 0.01, 0.001, 0.0001, and 0.00001, respectively. When
the learning rate is 0.01, the reward curve begins to converge
around 4500 episodes. Compared to other convergence curves,
the convergence is slower and gets trapped in a local optimum
until it fully converges at approximately 6000 episodes. When
the learning rate is 0.001, the reward curve converges at 4000
episodes and achieves the optimal reward value compared to
other convergence curves. When the learning rate is 0.0001,
convergence occurs at 5000 episodes, with its reward curve
falling between those of learning rates 0.01 and 0.001. Finally,
when the learning rate is 0.00001, the convergence result is the
farthest from the optimal solution. Therefore, this experiment
selects a learning rate of 0.001 to improve the algorithm’s
convergence stability while accelerating the convergence
speed.

2) Effect of Discount Factor on Convergence the Reward:
Fig. 3(b) describes the effect of different discount factors on
reward convergence. The discount factors are set to 0.29,
0.59, 0.80, and 0.99. When the discount factor is set to 0.80,
both the convergence speed and the final convergence result
outperform the other discount factor settings. Our algorithm
selects a discount factor of 0.80, as it strikes a balance between
immediate rewards and long-term future rewards, allowing
more subsequent requests without SF to benefit after the
current SF request is processed.

3) Effect of Batch Size on Convergence the Reward: Batch
Size refers to the number of samples used to update the neural
network parameters in each training iteration. Both too large
and too small Batch Sizes can lead to unstable training or poor
results. Fig. 3(c) describes the effect of different batch sizes
on the convergence speed of the reward function. When the
batch sizes are set to 16, 32, and 64, the convergence speed of
the reward function is slower compared to a batch size of 128.
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TABLE III
EXPERIMENTAL PARAMETER SETTINGS AND SFS LIMIT

System and DRL Parameters Values System and DRL Parameters Values

Number of IIoTEs [1, 50] Task Generation Rate [0, 1]

Number of Edge Servers [2, 6] Learning Rate 0.001

Number of Cloud Servers 1 Batch Size 128

SF Request Priority Value [1,10] Discount Factor 0.99

SF Code Size [SOKB,500MB] SF Input Size [10KB,2.5MB]
SF Request CPU Demand [1,4] SF Request Storage Demand [100KB,2048MB]
SF Request NW I/O demand [10KB,4MB] SF Request Offloading Action Space [4,8]

Reward_values

Reward_values

3500

Reward_values
o
=
=
=

37504000 4250 4500 4750 5000 B 35001 3750 4000 4250 4500 4750 5000

— discount rate = 0.29 0
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— batch size = 16

batch size = 32
— batch size = 64
— batch size = 128
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Fig. 3.
the reward function.

Furthermore, the convergence result with a batch size of 128 is
the optimal one. To ensure good algorithm performance while
reducing training time, the subsequent experiments use a Batch
Size of 128.

C. Simulation Results

The task success rate refers to the proportion of successfully
executed tasks within a unit time slot relative to the total
number of tasks. The average task delay represents the average
execution time of tasks in the system. A delay closer to the
maximum tolerable value indicates a longer average waiting
time for tasks, which reflects a poorer system QoS. The
average task energy consumption refers to the battery energy
consumed by each IoT device for each task. The average
cost per task refers to the monetary expenditure incurred for
offloading tasks to cloud or edge servers, indicating the cost
that each IoT device must pay. The average cold start ratio
refers to the proportion of cold start tasks among all completed
tasks within a unit time slot, calculated as the number of
cold start tasks divided by the sum of cold start tasks, warm
start tasks, and tasks that timed out. The average reward
of task computing represents the benefits each task earns
under different algorithms. A lower average execution time of
tasks correlates with higher benefits, while higher task energy
consumption and monetary costs lead to smaller benefits. The
specific reward calculation is detailed in (19).

1) Training Reward Curves and Model Convergence Size:
The training speed of an algorithm affects the rapid deploy-
ment and execution of offloading instructions. The results
in Fig. 4(a) show a comparison between CSODQN, DQN,
DDQN, and D3QN algorithms, evaluating the efficiency of
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Fig. 4. Training reward curves and model convergence sizes of CSODQN,
D3QN, DDQN, and DQN for task offloading across 4 IoT devices under a
task arrival rate of 0.4. (a) Original reward curves. (b) Model size (MB).

their training speed. CSODQN begins to converge around 50
episodes and reaches the optimal value at 100 episodes. DQN,
DDQN, and D3QN all begin to converge around 100 episodes,
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rate.

with D3QN converging by 300 episodes, and DQN and
DDOQN converging by 400 episodes. CSODQN outperforms
the other algorithms in terms of both convergence speed and
the final convergence result. The network structures of DQN
and DDQN are similar, with relatively simple architectures and
fewer parameters. When the reward converges, the model sizes
are similar and relatively small, both around 0.295 MB, as
shown in Fig. 4(b). The model size of CSODQN is similar to
that of D3QN, ranging from 0.325 to 0.327 MB. Although the
CSODQN model is larger, it exhibits better performance and
learning ability. In complex environments, it can make more
accurate decisions. The edge scenario does not necessarily
prohibit a certain level of resource consumption. Some edge
devices (such as industrial gateways, smart cameras, etc.)
have relatively high configurations [18], with some resource
redundancy that can support the operation of larger models.
The accuracy advantage of CSODQN can compensate for
the resource usage disadvantage, leading to higher overall
gains.

As shown in Fig. 5(a), the reward curves during the
training process of 4 IoT devices under a task arrival
rate of 0.6 are presented. Fig. 5(b) shows the training and
validation process where the trained reinforcement learning
model is transferred to a new environment with 50 IoT
devices. CSODQN achieves a higher average reward during
training, with a converged reward of approximately —98,
which is noticeably better than DQN (—102), D3QN (—104),
and DDQN (—106). Furthermore, CSODQN exhibits lower
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post-convergence variance, indicating greater stability. These
numerical results demonstrate that even though CSODQN
was trained with only 4 IoT devices, it maintains superior
performance and stable policy behavior when transferred to an
environment with 50 IoT devices. This suggests that CSODQN
possesses strong generalization capabilities and adaptability
to varying deployment scales. Therefore, it is reasonable to
infer that CSODQN remains effective in ultradense edge
computing scenarios involving large-scale IoT deployments
(e.g., over 1000 devices), maintaining both policy effectiveness
and system stability.

2) Performance Comparison With Different Task Arrival
Density: Fig. 6 compares CSODQN and other baseline algo-
rithms in terms of service quality and system resource
consumption under varying task arrival densities. As the
task arrival density increases, the number of requests for SF
increases within the same time frame. This leads to an increase
in average execution time due to resource waiting, and the
task success rate begins to decline. The task success rate
and reward benefits of the Random and the ESFO algorithm
decline rapidly, demonstrating poor robustness. The cold start
probability decreases as well. High-concurrency task requests
cause more SF requests to occur within the survival time of
their respective type of function, allowing for faster execution
through warm starts. As the task arrival rate increases from
0.1 to 0.4, network resources are relatively sufficient, and task
execution success rates remain above 80%. However, when the
task arrival rate increases from 0.4 to 0.6 or higher, task density
increases significantly, causing a sharp decline in task success
rates, dropping to below 50%. More tasks reach the maximum
delay, and fewer tasks successfully complete and receive
positive rewards. More tasks fail to execute successfully,
consuming system resources and leading to higher penalties.
Nevertheless, CSODQN maintains the highest task success
rate and the lowest average task energy consumption compared
to D3QN, DDQN, and DQN algorithms, not only detects
cold start occurrences effectively but also reduces the system’s
energy consumption.

3) Performance Comparison With Different Numbers of
IIoTEs: As shown in Fig. 7, with the increase in IoT devices,
SF requests rise, leading to greater competition for limited
edge and network resources. This results in longer average task
execution times and a declining success rate. When the number
of devices increases from 1 to 6, edge server performance
deteriorates due to contention. Reinforcement-learning-based
methods maintain a high success rate at the cost of increased
delay, while Random and ESFO algorithms experience a sharp
drop in success rate, falling below 60%. CSODQN achieves
the best success rate with less than a 10% increase in delay. As
the number of devices rises from 6 to 20, cold start frequency
gradually decreases to below 50%, enabling more warm starts.
CSODQN effectively balances multiple objectives, including
delay, energy consumption, and success rate.

4) Performance Comparison With Different Keep Alive
Time: As shown in Fig. 8, the keep alive (survival time) refers
to the period after the execution of a serviceless function,
during which the function’s runtime environment remains
active before being destroyed. For a fixed task arrival rate,
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as the survival time increases, more function requests occur
within the warm state of the corresponding function, allowing
the function to be instantiated and executed via a warm
start. As a result, the probability of cold starts in the system
significantly decreases. However, excessively long survival
times consume system storage resources, which contradicts the
service philosophy of serverless computing. The task success
rate of ESFO fluctuates between 75% and 80%, while the
success rate of Random remains below 70%. In contrast,
reinforcement-learning-based algorithms can maintain a suc-
cess rate above 87%. CSODQN achieves the highest overall
success rate and reward, and its device energy consumption

4 6 8 10
The number of IloTEs

4 6 8 10 20
The number of IloTEs

© ®

Performance comparison of different offloading methods with different number of IIoTEs. (a) Success rate. (b) Average task delay. (c) Cold start
ratio. (d) Average task energy consumption. (e) Average dollar of task spent.

(f) Average reward of task computing.

is second only to that of ESFO, effectively reducing system
resource consumption while ensuring QoS.

5) Performance Comparison With Different Maximum
Tolerable Delay: As shown in Fig. 9, with the increase in
the maximum tolerable delay for tasks, the task success
rate in the system improves significantly. According to the
design of the reward function, the proportion of cold start
time within the maximum tolerable delay decreases, meaning
that the reward gain from transitioning tasks from cold start
to warm start is reduced. As a result, the system places
greater emphasis on minimizing reward loss through energy
consumption optimization. Although edge servers have higher
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computational costs and lower computing capabilities com-
pared to cloud data centers, the increased tolerable delay
allows more SF requests to maintain service quality at the
edge. The average dollar of task spent for Random and ESFO
methods is four to five times higher than that of reinforcement-
learning-based approaches, with CSODQN maintaining the
lowest cost and achieving the highest reward. Although the
average task processing time increases, it does not impact
the overall service quality of the system. Overall, as the
maximum tolerable delay increases, the task success rate of
all methods remains above 90%, and CSODQN demonstrates

a better balance between service quality and system cost,
outperforming other algorithms.

VI. CONCLUSION

To reduce the frequency of cold starts and efficiently
utilize resources in a distributed SEC environment, this work
establishes a multilayer SEC system model that involves cloud
servers, edge nodes, and end IoT devices. It systematically
investigates the task offloading problem and cold start issue of
SF execution in SEC. A vertical offloading mechanism and SF
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warm instance pools are introduced, along with distinct cold
start models for different computing nodes. Each SF request
is treated as the basic unit for offloading, with offloading
strategies applied individually. By optimizing the reward
function, the multiuser, multitype SF offloading problem is
transformed into a multiobjective optimization task consider-
ing cold start frequency, delay, energy consumption, and cost.
cold-start-aware distributed offloading method (CSODQN)
based on DRL is proposed. To enhance training diversity
and prevent overfitting from biased high-priority samples, the
original sampling method is replaced with an independent
action-based strategy, accelerating DRL convergence. Under
task delay and resource constraints, the method seeks optimal
offloading decisions that minimize cold starts, maximize suc-
cess rate, and reduce energy and cost. Experimental results
show that under a high-concurrency task arrival rate of 0.9,
compared to the random offloading strategy, the task success
rate increases by 70%, the warm start probability increases
by 30%, the average monetary costs decreases by 58%, the
average energy consumption increases by 14.07%, and the
average delay decreases by 1.51%.
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