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Abstract—As the serverless computing model is integrated into
edge environments, it enhances the flexibility and scalability of
IoT systems, significantly improving the Quality of Service (QoS)
for Function as a Service (FaaS) users. However, serverless edge
computing faces several challenges, with one primary issue being
the latency caused by container cold starts. While container
caching mitigates, determining optimal caching duration in
resource-constrained edge environments requires balancing con-
flicting resource and latency costs. We formulate this fundamental
trade-off through a ski-rental problem lens and propose the
Prediction-Opinion based Caching Decision Algorithm (PCDA).
Our solution introduces a Dual-phase caching with deterministic
keep-alive windows and prediction-driven pre-warm windows,
and a confidence metric \ that dynamically calibrates decision
randomness against prediction errors. Extensive simulation ex-
periments demonstrated that, compared to existing algorithms,
PCDA performed best under various caching conditions, with an
overall system cost reduction of 12.04% to 73.97%.

Index Terms—edge computing, serverless, container caching

I. INTRODUCTION

Cloud computing has accelerated development of numerous
industries with its robust computing capabilities and flexible
resource management [1]. However, as the popularity and
number of IoT devices increase, there is a growing demand
for real-time data processing and low-latency responses [2].
Traditional cloud computing has shown its obvious limitations,
which has prompted the evolution of a more decentralized
approach called edge computing [3]-[6]. Edge computing,
as an extension of cloud computing, allocates computing
resources and services closer to the data source at the edge of
the network, thereby substantially reducing data transmission
latency, providing latency assurance services to end users.

As an emerging cloud computing model, serverless com-
puting further enhances the flexibility of accessing cloud ser-
vices [7]-[9]. Serverless computing is primarily implemented
as Function as a Service (FaaS), which decouples application
development and runtime environments from the underlying
infrastructure. By adhering to an event-based model, serverless
computing achieves high elasticity of cloud resources while
maintaining excellent programmability. In serverless comput-
ing, services are encapsulated in lightweight containers and
are invoked only when an event triggers a service request. In
recent years, serverless computing platforms, such as AWS
Lambda [10], have expanded to edge computing. Serverless
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edge computing is considered a key development direction for
future computing architectures.

Serverless edge computing terminates containers post-event
processing, inducing cold-start delays (100ms—seconds) from
resource provisioning and function loading [9]. With 52%
of Azure functions executing in <lIs [11], cold starts often
exceed service durations, degrading QoS and causing failures
in latency-sensitive applications.

We classify current methods for mitigating container cold
start latency into three categories: container pooling, container
preheating, and container reuse. Container pooling minimizes
preparation time by maintaining a pool of ready-to-use con-
tainers. Container preheating involves warming up containers
in anticipation of incoming requests, while container reuse
focuses on caching containers to handle future requests more
efficiently. In resource-constrained edge environments, con-
tainer reuse proves particularly effective for reducing cold-start
latency [13] [14].

In this paper, we attempt to mitigate the cold start la-
tency by caching containers by addressing the following
challenges. Firstly, caching container consumes additional re-
sources, which conflicts with the fundamental elastic principle
of serverless computing [15] to utilize resources only when
necessary. Secondly, only a small subset of serverless functions
are invoked frequently. Prolonged caching of infrequently
called functions leads to resource wastage. Especially in edge
environments with limited computing resources, the trade-offs
between resource consumption and latency reduction are even
more pronounced. Balancing the costs of caching containers
with the benefits of reduced latency is a challenging task [16].

All this challenge highlights the need for a holistic approach
to container caching.

The problem addressed in this paper encounters several
challenges: (1) Edge nodes vary in initializing containers,
processing function requests, and caching containers. This
heterogeneity leads to different costs across nodes, necessi-
tating diverse caching strategies for different functions and
nodes. (2) Function request patterns may not be accurately
predictable, especially for functions with frequently changing
invocation patterns. Existing prediction methods may not adapt
well to such dynamic patterns, resulting in less robust caching
strategies.
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In summary, this paper has made the following major
contributions:

o We map the container caching problem to a classic ski
rental problem and establish a trade-off model for cold
start latency and cache consumption.

o We propose a lightweight hybrid forecasting model for
more time edge environments, which can better predict
the time series data requested by users.

« We design a Prediction Opinion-based Caching Decision
Algorithm (PCDA), which is based on prediction opin-
ions. It is worth noting that this algorithm remains robust
even in cases of prediction failure.

o Numerous simulation experiments validate the feasibility
and superiority of our caching strategy.

The remainder of this paper systematically addresses these
innovations: Section II formalizes our background and moti-
vation . Section III details of PCDA Section IV validates our
approach through comprehensive simulations.

II. BACKGROUND AND MOTIVATION

In this section, we first describe how the container caching
problem maps to the ski rental problem, and then we build a
consumption model that trades the container cache cost against
the cold start cost.

A. Mapping to the Ski-Rental Problem

In serverless computing environments, the system must
determine a caching duration for containers upon completing
request execution. This critical decision specifies how long the
container remains active in memory, during which it incurs
time-proportional caching costs. If the container persists in
cache when subsequent requests arrive, it eliminates cold-
start latency; otherwise, the system must pay the penalty
of cold-start initialization delays.This fundamental trade-off
mirrors the classic ski-rental problem [16]-[19]. The ski-
rental problem describes such a scenario where a skier is faced
with a to-rent-or-to-buy struggle. Since the suitable days for
skiing is unknown, the skier has to choose between renting a
pair of skis or simply buying it. Assume the cost of renting
the ski and the cost of buying it. The skier has to make the
decision for the current skiing season such that the total cost
is minimized. As illustrated in Fig. 1, the analogy establishes
precise mathematical correspondence:

e Ski Purchase Cost mapping to the cold start delay
cost, the purchase corresponds to the destruction of the
container, so the container initialization overhead is paid
when the next request arrives

« Daily Rental Fee corresponds to caching cost , accruing
per-time-unit while maintaining container availability

o Unknown Ski Days reflects the stochastic nature of
next request arrival , which remains unpredictable when
making caching decisions

The problem’s core dilemma persists: Premature container

destruction risks repeated cold-start penalties, while excessive
caching wastes resources through unnecessary reservation of

memory capacity. This tension between immediate latency
avoidance and long-term cost efficiency forms the optimization
crux in container lifecycle management.

Unknown iking Days

r \
| Rent > Buy > ............
% = ! Cache > Destroy >
L
.

Next Arrive Time

Fig. 1. Mapping of the container caching problem to the ski-rental problem.

B. Cost Model

Compared to the traditional ski-rental problem model, if we
can predict the time interval until the next user request, we
can introduce a pre-warm decision process in addition to the
basic caching decision. Therefore, we establish two decision
windows for container lifecycle management:

o Keep-alive Window (7}, > 0): Mandatory caching dura-
tion (in time units) immediately after request execution,
providing deterministic cold-start avoidance

o Pre-warm Window (7}, > 0): Prediction-driven time
gap (in time units) between container destruction and
proactive re-caching, balancing resource conservation and
latency prevention

Container-specific Parameters:

e M;: Memory footprint of container type ¢

o Mpyin = min{M;}: Smallest container memory in the
system

e T;: Cold-start initialization time for container type ¢ (in
time units)

Under this decision framework, the container lifecycle con-

sists of three distinct phases, as illustrated in Fig. 2:

Cached
keep-alive window
A

.

The lifecycle of a container in PCDA

pre-warm window
A Uncached

Next Request ‘

s

J

Fig. 2. Container lifecycle phases: Active caching (7}), Risk window (T}),
and Re-caching phase.

Let ¢; = M;/Muy, denote the normalized caching cost
rate per time unit, B; = T; denote the cold-start penalty for
container type ¢, and X the random variable representing time
until next request arrival. The total cost C' is:
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e X <T,
C(Ty, Ty, X) = ciTr + Bi, T <X <Tp+T, (1)
c(X-T,), X >Th+T,

Let 8 be the proportionality coefficient ensuring the nor-
malized caching cost does not exceed 1/ of the cold-start
penalty, leading to the constraint:

This constraint guarantees that for each container type, the
normalized caching cost per time unit does not exceed a [3-
adjusted fraction of its cold-start penalty. If B¢, > B;, caching
for one time unit would be more expensive than paying the
cold-start penalty, rendering caching economically irrational
for type 1.

The expected total cost integrates over the request interval
distribution fx(x):

Tk
E[C] = ci/ xfx(x)dx (Active caching)
0

T+ Tp
+@Jwﬂa/ fx(z)dx (Risk period) (3)

Tk

(x—T,)fx(x)dz (Re-caching)

o
+ Cl‘/
Tp+Tp

C. Key Challenges

After mapping the container caching issue to the ski rental
problem, we identify two critical challenges in optimizing
container lifecycle management:

Uncertainty in dynamic request patterns: Accurate pre-
diction of request intervals is essential but challenging in
edge environments. While LSTM networks achieve 95% pre-
diction accuracy [20], their high computational cost makes
them impractical for resource-constrained edge nodes. [21]-
[23]illustrate alternative prediction paradigms with lower di-
mensional requirements, but they may not be suitable for a
wide variety of function types. Developing lightweight yet
effective prediction models remains a key challenge.

Balancing prediction and real-time responsiveness: The
classic ski-rental dilemma offers two choices: continuous
caching or cold starts. We introduce a third option—a
prediction-driven pre-warm window—that can potentially
avoid both extremes. However, this approach introduces new
risks:

e Over-reliance on predictions may lead to unnecessary

caching costs

o Prediction errors could simultaneously incur cold-start

penalties and wasted caching

o Rapid decision-making conflicts with computationally

intensive prediction methods

This dual challenge requires an adaptive algorithm that
dynamically balances prediction accuracy with real-time re-
sponsiveness, while maintaining low computational overhead
in resource-constrained edge environments.

III. ALGORITHM DESIGN

In this section, we will provide a detailed explanation
of how the PCDA is designed. We first develop a hybrid
prediction model that effectively captures the temporal patterns
in user request sequences. The predictions are then integrated
as input with a classical randomized algorithm, where a con-
fidence metric A (0-1) is introduced to ensure the algorithm’s
robustness against prediction errors.

A. Hybrid Prediction Model

To address the limitations of single prediction methods
and improve computational efficiency, we develop a hybrid
prediction model that combines ARIMA and TES (Triple
Exponential Smoothing). As illustrated in Fig. 3, this hybrid
approach leverages the complementary strengths of both meth-
ods: ARIMA effectively captures linear relationships in the
data while TES excels at identifying nonlinear trends. The
combination enables more accurate and robust prediction of
function request arrival times across diverse workload patterns.

The hybrid prediction is computed as:

X = wariva - X FMA 4 g - XTES “)
where XARMA apd XTES denote the predictions from ARIMA
and TES models respectively.

The weights are dynamically adapted based on historical
prediction errors:
> je{ARIMATES} €XP(—1 D €)

user's request

pattern

ARIMA_pred TSE_pred
h A
Update weight Hybird_pred Update weight

A 4

Collect Error

Fig. 3. Hybrid prediction workflow with dynamic weight adaptation

This hybrid design achieves two key benefits: adaptability to
changing workload patterns, and reduced computational over-
head compared to deep learning approaches. where € represent
the mean absolute error of historical predictions,calculated as
€= % Tic, 1Xi — Xil.
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B. Prediction-Opinion Based Caching Decision Algorithm

As shown in Algorithm 1, the inputs include the predicted
time for the next request (X ), the costs associated with caching
(c) and cold starts (B), mean absolute error of historical pre-
dictions ¢, average real value (E[X]), and the current system
parameter 5. The algorithm outputs a keep-alive window (7%)
and a pre-warm window (7},).

Due to high variability in invocation patterns for some func-
tions, predictions may sometimes be inaccurate. To address
this, we introduce a confidence metric A € [0, 1], calculated
as A = min(e/E[X],1). The parameter Tsg = B/c denotes
the caching decision threshold in the ski rental model.

The algorithm begins by comparing X with Ty to guide
caching or deletion of the container. A plays a critical role
in adjusting the algorithm’s behavior, where it influences the
range of random selection. Probabilities are assigned to each
integer, allowing dynamic selection of 7} based on computed
confidence.

When A = 0, the algorithm fully trusts predictions, lead-
ing to immediate container deletion or indefinite caching.
Conversely, A = 1 reflects complete distrust in predictions,
introducing maximal randomization.

The PCDA leverages accurate predictions by pre-warming
containers when A < 0.2, calculating T}, = max (X —Ty+e¢, 0).
To mitigate prediction errors, pre-warming duration is bounded
by Tisg, aligning with the next expected request timing.

Finally, the algorithm’s robustness is strengthened through
A, and performance evaluations confirm that, even under
complete prediction failures, PCDA achieves better outcomes
than random caching strategies.

Complexity Analysis: The time complexity of PCDA is
dominated by the probability distribution generation loops. Let
k = |\Tsr] and | = [Tsr/A] denote the maximum iterations
in each branch. The worst-case complexity is O(max(k,[))
where:

o k < Ty since A € [0,1]

e | < Tsgr/Amin for minimal confidence Amyin
In practice, the Tsg = B/c ratio remains bounded as cold-start
penalties (B) and caching costs (c) are positively correlated in
real deployments. Empirical measurements show linear scaling
with Tgr (typically Tsg < 50 slots in our experiments), making
the algorithm suitable for real-time decision making.

IV. PERFORMANCE EVALUATION

In this chapter, we begin by individually testing the ro-
bustness of the Prediction opinion-based Caching Decision
Algorithm (PCDA), conclude with a comprehensive evaluation
of the overall performance of PCDA.

A. Simulation Settings

To model hardware heterogeneity, we configure five edge
nodes with CPU frequencies f; € [2.4,3.6] GHz sampled
uniformly. The cold-start penalty B; inversely scales with node
capability:

24

Bi = Bbase X —

6
7. (6)

Algorithm 1: Prediction Opinion-Based Caching De-
cision Algorithm (PCDA)
Input: X, ¢, B, e, E[X], 8
Output: 7}, T},
1 A+ min ﬁ,l ;
2 Tsg «+ B/c;
3 cetr < Bo;
4 if X > Tsg then
5 k <+ L)\TSRJ;
6 for j =1to k do

T k=

. SR — Ceff . Ceff .

p]%( TSRe) Tee [ 1 ; ceii \*\
SR _( _TSR)

8 end

9 Choose T}, from {1,...,k} with {p,};
10 if A < 0.2 then

7

1 ‘ T, + max(X — T + €,0);
12 else

13 | T, -1

14 end

15 else

16 [+ I—TSR/)Cl;
17 for:=1to !l do

1—i

e () ™ e
— — _eit

TSR<1 (1 TSR>>

19 end

20 | Choose T}, from {1,...,1} with {¢;};
21 T, < —1;

22 end

23 return Ty, T);

18

where By, denotes the baseline cold-start penalty when
running on 2.4GHz nodes. Container memory footprints M
and cold-start durations 7T, are generated across 20 function
types with:

o Cold-start time: T, ~ U(10,50) time slots
o Memory requirement: M ~ 1{/(140,400) MB

Request patterns follow our original event modeling ap-
proach with:

o Function popularity: Zipf distribution (o = 0.5-1.5)

o Request arrival: Poisson process (A = 0.05-0.15)

o Evaluation scale: 10K requests per run (10 iterations)

This parameterization captures three key dimensions: 1)
hardware heterogeneity through CPU frequency variations,
2) functional diversity via memory/cold-start requirements,
and 3) realistic invocation patterns via heavy-tailed popularity
distributions.

B. Robustness Verification of PCDA

To verify the robustness of the caching decision algorithm,
this study selects the request pattern of a single user as the
request data. Five sets of control request data were used as
the input of the algorithm:
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Fig. 4. Competitive ratio under different 3 values

o Perfect Prediction Group: The predicted data is the
actual data.

« Bad Prediction One: The actual data minus the average
of the actual data (adding a negative offset).

o Bad Prediction Two: The actual data plus the average
of the actual data (adding a positive offset).

o Bad Prediction Three: Using the average of the data as
the prediction value.

« Random Group: In this group, the confidence value is
always set to one. This group is mainly used to contrast
the performance with the other groups.

« Adaptive Group: In this group, we used the real predic-
tions as the input for PCDA.The confidence value is set
as in PCDA, i.e., the first line of Algorithm 1.

To evaluate performance, we employ the competition ratio
(CR), defined as the cost ratio between our algorithm and the
optimal offline strategy. The optimal strategy cacl}ees containers
until the next request if it arrives before ¢ + ;Tn’;’ otherwise
destroys them immediately. All results are averaged over 10
iterations. As shown in Fig. 4, we observe:

Impact of Bad Predictions: When the value of 3 is small,
the caching cost is low, and the negative impact of bad
predictions on the algorithm’s performance is minimal because
the algorithm tends to make conservative decisions regardless
of the prediction results. As [ increases, the caching cost also
increases, and the negative impact of bad predictions becomes
smaller because the algorithm tends to make more aggressive
deletion decisions.

Impact of Adaptive \: The Adaptive Group consistently
maintains a lower CR, with performance fluctuations of less

than 0.1 across different S values. This indicates that the
adaptive confidence value calculation method we designed is
successful, and it ensures the robustness of PCDA.

Overall Analysis: Across different g values, all groups
with poor prediction accuracy can still achieve performance
comparable to the completely random group by selecting an
appropriate confidence level. This indicates that even when the
prediction module fails, PCDA performance can be maintained
by tuning the confidence value.

C. Performance Verification of PCDA

To verify the performance of our caching decision algo-
rithm, we use the following baseline methods for comparison:

o Ski Rental (SR): Classic Ski Rental algorithm without
pre-warming

o Fixed Caching (FC): AWS Lambda-style fixed duration
caching

o Histogram (HIST) [11]: History-based caching from
Azure Functions

o Reinforcement Learning (RL) [12]: Q-learning ap-
proach with cost rewards

e Pre Warm (PW) [21]: Prediction-only pre-warming

o Keep Warm (KW): Always-cache strategy

Overall Performance Summary: From Fig. 5, PCDA
demonstrates: Maximum 73.97% cost reduction vs KW at
B = 3.0 52.09% improvement over FC 46.34% better than
HIST in medium S range 12.04% advantage vs SR

Effect of parameter 5: Low 3 (< 1.0): Caching dominates
(PW closest to PCDA) Medium S (1.0-3.0): PCDA’s adaptive
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Fig. 5.

A shows maximum benefit High 5 (> 3.0): Strategies converge
as caching cost dominates

Individual Algorithm Analysis:PCDA: Maintains 2-
competitiveness through:Dynamic A adaptation (0.2 thresh-
old), Error-compensated pre-warming (1, = max(f( -
Ty + €,0)), Probabilistic keep-alive selection SR: Lacks pre-
warming capability, 12% higher cold starts HIST: Suffers 32%
error rate with shifting request patterns RL: Requires 500+
episodes for Q-value convergence PW: Prediction failures
cause 41% cost spikes FC: Inflexible for bursty workloads
KW: Linear cost growth with 8 (no adaptation)

Cold Start Analysis: PCDA achieves 58% lower cold
starts than SR ,HIST/PW have 0.3 cold start probability
due to prediction errors,RL reduces cold starts by 22% after
convergence

V. CONCLUSION

This paper proposes PCDA, an adaptive container caching
strategy for serverless edge computing that addresses the cold-
start versus resource trade-off by formalizing it as a ski-
rental problem. Our solution introduces dual-phase caching
(keep-alive and prediction-driven pre-warm windows) with a
dynamic confidence metric A to balance deterministic caching
and prediction-based optimization. The lightweight hybrid
model combining ARIMA and TES enables accurate request
forecasting while minimizing computational overhead. Ex-
tensive simulations demonstrate PCDA reduces total system
costs by 12.04%-73.97% across diverse edge configurations,

Algorithm
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mmm Normalized Total Cost

Normalized Value
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Total cost under different 5 Values (PCDA vs Baselines)

outperforming existing approaches through robust cold-start
mitigation and efficient memory utilization.
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