
Cloud Computing and Grid Computing 360-Degree Compared
1,2,3Ian Foster, 4Yong Zhao, 1Ioan Raicu, 5Shiyong Lu

foster@mcs.anl.gov, yozha@microsoft.com, iraicu@cs.uchicago.edu, shiyong@wayne.edu
1 Department of Computer Science, University of Chicago, Chicago, IL, USA

2Computation Institute, University of Chicago, Chicago, IL, USA
3Math & Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

4Microsoft Corporation, Redmond, WA, USA
5 Department of Computer Science, Wayne State University, Detroit, MI, USA

Abstract– Cloud Computing has become another buzzword after Web
2.0. However, there are dozens of different definitions for Cloud
Computing and there seems to be no consensus on what a Cloud is.
On the other hand, Cloud Computing is not a completely new concept;
it has intricate connection to the relatively new but thirteen-year
established Grid Computing paradigm, and other relevant
technologies such as utility computing, cluster computing, and
distributed systems in general. This paper strives to compare and
contrast Cloud Computing with Grid Computing from various angles
and give insights into the essential characteristics of both.

1 100-Mile Overview
Cloud Computing is hinting at a future in which we won’t
compute on local computers, but on centralized facilities
operated by third-party compute and storage utilities. We sure
won’t miss the shrink-wrapped software to unwrap and install.
Needless to say, this is not a new idea. In fact, back in 1961,
computing pioneer John McCarthy predicted that
“computation may someday be organized as a public utility”—
and went on to speculate how this might occur.

In the mid 1990s, the term Grid was coined to describe
technologies that would allow consumers to obtain computing
power on demand. Ian Foster and others posited that by
standardizing the protocols used to request computing power,
we could spur the creation of a Computing Grid, analogous in
form and utility to the electric power grid. Researchers
subsequently developed these ideas in many exciting ways,
producing for example large-scale federated systems (TeraGrid,
Open Science Grid, caBIG, EGEE, Earth System Grid) that
provide not just computing power, but also data and software,
on demand. Standards organizations (e.g., OGF, OASIS)
defined relevant standards. More prosaically, the term was also
co-opted by industry as a marketing term for clusters. But no
viable commercial Grid Computing providers emerged, at least
not until recently.

So is “Cloud Computing” just a new name for Grid? In
information technology, where technology scales by an order
of magnitude, and in the process reinvents itself, every five
years, there is no straightforward answer to such questions.

Yes: the vision is the same—to reduce the cost of computing,
increase reliability, and increase flexibility by transforming
computers from something that we buy and operate ourselves
to something that is operated by a third party.

But no: things are different now than they were 10 years ago.
We have a new need to analyze massive data, thus motivating
greatly increased demand for computing. Having realized the
benefits of moving from mainframes to commodity clusters,

we find that those clusters are quite expensive to operate. We
have low-cost virtualization. And, above all, we have multiple
billions of dollars being spent by the likes of Amazon, Google,
and Microsoft to create real commercial large-scale systems
containing hundreds of thousands of computers. The prospect
of needing only a credit card to get on-demand access to
100,000+ computers in tens of data centers distributed
throughout the world—resources that be applied to problems
with massive, potentially distributed data, is exciting! So we
are operating at a different scale, and operating at these new,
more massive scales can demand fundamentally different
approaches to tackling problems. It also enables—indeed is
often only applicable to—entirely new problems.

Nevertheless, yes: the problems are mostly the same in Clouds
and Grids. There is a common need to be able to manage large
facilities; to define methods by which consumers discover,
request, and use resources provided by the central facilities;
and to implement the often highly parallel computations that
execute on those resources. Details differ, but the two
communities are struggling with many of the same issues.

1.1 Defining Cloud Computing
There is little consensus on how to define the Cloud [49]. We
add yet another definition to the already saturated list of
definitions for Cloud Computing:

A large-scale distributed computing paradigm that is
driven by economies of scale, in which a pool of
abstracted, virtualized, dynamically-scalable, managed
computing power, storage, platforms, and services are
delivered on demand to external customers over the
Internet.

There are a few key points in this definition. First, Cloud
Computing is a specialized distributed computing paradigm; it
differs from traditional ones in that 1) it is massively scalable,
2) can be encapsulated as an abstract entity that delivers
different levels of services to customers outside the Cloud, 3) it
is driven by economies of scale [44], and 4) the services can be
dynamically configured (via virtualization or other approaches)
and delivered on demand.

Governments, research institutes, and industry leaders are
rushing to adopt Cloud Computing to solve their ever-
increasing computing and storage problems arising in the
Internet Age. There are three main factors contributing to the
surge and interests in Cloud Computing: 1) rapid decrease in
hardware cost and increase in computing power and storage
capacity, and the advent of multi-core architecture and modern
supercomputers consisting of hundreds of thousands of cores;

2) the exponentially growing data size in scientific
instrumentation/simulation and Internet publishing and
archiving; and 3) the wide-spread adoption of Services
Computing and Web 2.0 applications.

1.2 Clouds, Grids, and Distributed Systems
Many discerning readers will immediately notice that our
definition of Cloud Computing overlaps with many existing
technologies, such as Grid Computing, Utility Computing,
Services Computing, and distributed computing in general. We
argue that Cloud Computing not only overlaps with Grid
Computing, it is indeed evolved out of Grid Computing and
relies on Grid Computing as its backbone and infrastructure
support. The evolution has been a result of a shift in focus
from an infrastructure that delivers storage and compute
resources (such is the case in Grids) to one that is economy
based aiming to deliver more abstract resources and services
(such is the case in Clouds). As for Utility Computing, it is not
a new paradigm of computing infrastructure; rather, it is a
business model in which computing resources, such as
computation and storage, are packaged as metered services
similar to a physical public utility, such as electricity and
public switched telephone network. Utility computing is
typically implemented using other computing infrastructure
(e.g. Grids) with additional accounting and monitoring services.
A Cloud infrastructure can be utilized internally by a company
or exposed to the public as utility computing.

See Figure 1 for an overview of the relationship between
Clouds and other domains that it overlaps with. Web 2.0
covers almost the whole spectrum of service-oriented
applications, where Cloud Computing lies at the large-scale
side. Supercomputing and Cluster Computing have been more
focused on traditional non-service applications. Grid
Computing overlaps with all these fields where it is generally
considered of lesser scale than supercomputers and Clouds.

Figure 1: Grids and Clouds Overview

Grid Computing aims to “enable resource sharing and
coordinated problem solving in dynamic, multi-institutional
virtual organizations” [18][20]. There are also a few key
features to this definition: First of all, Grids provide a

distributed computing paradigm or infrastructure that spans
across multiple virtual organizations (VO) where each VO can
consist of either physically distributed institutions or logically
related projects/groups. The goal of such a paradigm is to
enable federated resource sharing in dynamic, distributed
environments. The approach taken by the de facto standard
implementation – The Globus Toolkit [16][23], is to build a
uniform computing environment from diverse resources by
defining standard network protocols and providing middleware
to mediate access to a wide range of heterogeneous resources.
Globus addresses various issues such as security, resource
discovery, resource provisioning and management, job
scheduling, monitoring, and data management.

Half a decade ago, Ian Foster gave a three point checklist [19]
to help define what is, and what is not a Grid: 1) coordinates
resources that are not subject to centralized control, 2) uses
standard, open, general-purpose protocols and interfaces, and 3)
delivers non-trivial qualities of service. Although point 3 holds
true for Cloud Computing, neither point 1 nor point 2 is clear
that it is the case for today’s Clouds. The vision for Clouds and
Grids are similar, details and technologies used may differ, but
the two communities are struggling with many of the same
issues. This paper strives to compare and contrast Cloud
Computing with Grid Computing from various angles and give
insights into the essential characteristics of both, with the hope
to paint a less cloudy picture of what Clouds are, what kind of
applications can Clouds expect to support, and what challenges
Clouds are likely to face in the coming years as they gain
momentum and adoption. We hope this will help both
communities gain deeper understanding of the goals,
assumptions, status, and directions, and provide a more
detailed view of both technologies to the general audience.

2 Comparing Grids and Clouds Side-by-Side
This section aims to compare Grids and Clouds across a wide
variety of perspectives, from architecture, security model,
business model, programming model, virtualization, data
model, compute model, to provenance and applications. We
also outline a number of challenges and opportunities that Grid
Computing and Cloud Computing bring to researchers and the
IT industry, most common to both, but some are specific to
one or the other.

2.1 Business Model
Traditional business model for software has been a one-time
payment for unlimited use (usually on 1 computer) of the
software. In a cloud-based business model, a customer will pay
the provider on a consumption basis, very much like the utility
companies charge for basic utilities such as electricity, gas, and
water, and the model relies on economies of scale in order to
drive prices down for users and profits up for providers. Today,
Amazon essentially provides a centralized Cloud consisting of
Compute Cloud EC2 and Data Cloud S3. The former is
charged based on per instance-hour consumed for each
instance type and the later is charged by per GB-Month of
storage used. In addition, data transfer is charged by TB /
month data transfer, depending on the source and target of
such transfer. The prospect of needing only a credit card to get
on-demand access to 100,000+ processors in tens of data
centers distributed throughout the world—resources that be

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

applied to problems with massive, potentially distributed data,
is exciting!

The business model for Grids (at least that found in academia
or government labs) is project-oriented in which the users or
community represented by that proposal have certain number
of service units (i.e. CPU hours) they can spend. For example,
the TeraGrid operates in this fashion, and requires increasingly
complex proposals be written for increasing number of
computational power. The TeraGrid has more than a dozen
Grid sites, all hosted at various institutions around the country.
What makes an institution want to join the TeraGrid? When an
institution joins the TeraGrid with a set of resources, it knows
that others in the community can now use these resources
across the country. It also acknowledges the fact that it gains
access to a dozen other Grid sites. This same model has
worked rather well for many Grids around the globe, giving
institutions incentives to join various Grids for access to
additional resources for all the users from the corresponding
institution.

There are also endeavors to build a Grid economy for a global
Grid infrastructure that supports the trading, negotiation,
provisioning, and allocation of resources based on the levels of
services provided, risk and cost, and users’ preferences; so far,
resource exchange (e.g. trade storage for compute cycles),
auctions, game theory based resource coordination, virtual
currencies, resource brokers and intermediaries, and various
other economic models have been proposed and applied in
practice [8].

2.2 Architecture
Grids started off in the mid-90s to address large-scale
computation problems using a network of resource-sharing
commodity machines that deliver the computation power
affordable only by supercomputers and large dedicated clusters
at that time. The major motivation was that these high
performance computing resources were expensive and hard to
get access to, so the starting point was to use federated
resources that could comprise compute, storage and network
resources from multiple geographically distributed institutions,
and such resources are generally heterogeneous and dynamic.
Grids focused on integrating existing resources with their
hardware, operating systems, local resource management, and
security infrastructure.

In order to support the creation of the so called “Virtual
Organizations”—a logical entity within which distributed
resources can be discovered and shared as if they were from
the same organization, Grids define and provide a set of
standard protocols, middleware, toolkits, and services built on
top of these protocols. Interoperability and security are the
primary concerns for the Grid infrastructure as resources may
come from different administrative domains, which have both
global and local resource usage policies, different hardware
and software configurations and platforms, and vary in
availability and capacity.

Grids provide protocols and services at five different layers as
identified in the Grid protocol architecture (see Figure 2). At
the fabric layer, Grids provide access to different resource
types such as compute, storage and network resource, code
repository, etc. Grids usually rely on existing fabric

components, for instance, local resource managers (i.e. PBS
[5], Condor [48], etc). General-purpose components such as
GARA (general architecture for advanced reservation) [17],
and specialized resource management services such as Falkon
[40] (although strictly speaking, Falkon also provides services
beyond the fabric layer).

Figure 2: Grid Protocol Architecture

The connectivity layer defines core communication and
authentication protocols for easy and secure network
transactions. The GSI (Grid Security Infrastructure) [27]
protocol underlies every Grid transaction.

The resource layer defines protocols for the publication,
discovery, negotiation, monitoring, accounting and payment of
sharing operations on individual resources. The GRAM (Grid
Resource Access and Management) [16] protocol is used for
allocation of computational resources and for monitoring and
control of computation on those resources, and GridFTP [2]
for data access and high-speed data transfer.

The collective layer captures interactions across collections of
resources, directory services such as MDS (Monitoring and
Discovery Service) [43] allows for the monitoring and
discovery of VO resources, Condor-G [24] and Nimrod-G [7]
are examples of co-allocating, scheduling and brokering
services, and MPICH [32] for Grid enabled programming
systems, and CAS (community authorization service) [21] for
global resource policies.

The application layer comprises whatever user applications
built on top of the above protocols and APIs and operate in VO
environments. Two examples are Grid workflow systems, and
Grid portals (i.e. QuarkNet e-learning environment [52],
National Virtual Observatory (http://www.us-vo.org),
TeraGrid Science gateway (http://www.teragrid.org)).

Clouds are developed to address Internet-scale computing
problems where some assumptions are different from those of
the Grids. Clouds are usually referred to as a large pool of
computing and/or storage resources, which can be accessed via
standard protocols via an abstract interface. Clouds can be
built on top of many existing protocols such as Web Services
(WSDL, SOAP), and some advanced Web 2.0 technologies
such as REST, RSS, AJAX, etc. In fact, behind the cover, it is
possible for Clouds to be implemented over existing Grid
technologies leveraging more than a decade of community

efforts in standardization, security, resource management, and
virtualization support.

There are also multiple versions of definition for Cloud
architecture, we define a four-layer architecture for Cloud
Computing in comparison to the Grid architecture, composed
of 1) fabric, 2) unified resource, 3) platform, and 4) application
Layers.

Figure 3: Cloud Architecture

The fabric layer contains the raw hardware level resources,
such as compute resources, storage resources, and network
resources. The unified resource layer contains resources that
have been abstracted/encapsulated (usually by virtualization)
so that they can be exposed to upper layer and end users as
integrated resources, for instance, a virtual computer/cluster, a
logical file system, a database system, etc. The platform layer
adds on a collection of specialized tools, middleware and
services on top of the unified resources to provide a
development and/or deployment platform. For instance, a Web
hosting environment, a scheduling service, etc. Finally, the
application layer contains the applications that would run in
the Clouds.

Clouds in general provide services at three different levels
(IaaS, PaaS, and Saas [50]) as follows, although some
providers can choose to expose services at more than one level.
Infrastructure as a Service (IaaS) [50] provisions hardware,
software, and equipments (mostly at the unified resource layer,
but can also include part of the fabric layer) to deliver software
application environments with a resource usage-based pricing
model. Infrastructure can scale up and down dynamically
based on application resource needs. Typical examples are
Amazon EC2 (Elastic Cloud Computing) Service [3] and S3
(Simple Storage Service) [4] where compute and storage
infrastructures are open to public access with a utility pricing
model; Eucalyptus [15] is an open source Cloud
implementation that provides a compatible interface to
Amazon’s EC2, and allows people to set up a Cloud
infrastructure at premise and experiment prior to buying
commercial services.
Platform as a Service (PaaS) [50] offers a high-level
integrated environment to build, test, and deploy custom
applications. Generally, developers will need to accept some
restrictions on the type of software they can write in exchange
for built-in application scalability. An example is Google’s
App Engine [28], which enables users to build Web

applications on the same scalable systems that power Google
applications.
Software as a Service (SaaS) [50] delivers special-purpose
software that is remotely accessible by consumers through the
Internet with a usage-based pricing model. Salesforce is an
industry leader in providing online CRM (Customer
Relationship Management) Services. Live Mesh from
Microsoft allows files and folders to be shared and
synchronized across multiple devices.

Although Clouds provide services at three different levels
(IaaS, PaaS, and Saas), standards for interfaces to these
different levels still remain to be defined. This leads to
interoperability problems between today’s Clouds, and there is
little business incentives for Cloud providers to invest
additional resources in defining and implementing new
interfaces. As Clouds mature, and more sophisticated
applications and services emerge that require the use of
multiple Clouds, there will be growing incentives to adopt
standard interfaces that facilitate interoperability in order to
capture emerging and growing markets in a saturated Cloud
market.

2.3 Resource Management
This section describes the resource management found in
Grids and Clouds, covering topics such as the compute model,
data model, virtualization, monitoring, and provenance. These
topics are extremely important to understand the main
challenges that both Grids and Clouds face today, and will
have to overcome in the future.

Compute Model: Most Grids use a batch-scheduled compute
model, in which a local resource manager (LRM), such as PBS,
Condor, SGE manages the compute resources for a Grid site,
and users submit batch jobs (via GRAM) to request some
resources for some time. Many Grids have policies in place
that enforce these batch jobs to identify the user and
credentials under which the job will run for accounting and
security purposes, the number of processors needed, and the
duration of the allocation. For example, a job could say, stage
in the input data from a URL to the local storage, run the
application for 60 minutes on 100 processors, and stage out the
results to some FTP server. The job would wait in the LRM’s
wait queue until the 100 processors were available for 60
minutes, at which point the 100 processors would be allocated
and dedicated to the application for the duration of the job.
Due to the expensive scheduling decisions, data staging in and
out, and potentially long queue times, many Grids don’t
natively support interactive applications; although there are
efforts in the Grid community to enable lower latencies to
resources via multi-level scheduling, to allow applications with
many short-running tasks to execute efficiently on Grids [40].
Cloud Computing compute model will likely look very
different, with resources in the Cloud being shared by all users
at the same time (in contrast to dedicated resources governed
by a queuing system). This should allow latency sensitive
applications to operate natively on Clouds, although ensuring a
good enough level of QoS is being delivered to the end users
will not be trivial, and will likely be one of the major
challenges for Cloud Computing as the Clouds grow in scale,
and number of users.

Platform

Application

Unified Resource

Fabric Cl
ou

d
A
rc
hi
te
ct
ur
e

Data Model: While some people boldly predicate that future
Internet Computing will be towards Cloud Computing
centralized, in which storage, computing, and all kind of other
resources will mainly be provisioned by the Cloud, we
envision that the next-generation Internet Computing will take
the triangle model shown in Figure 4: Internet Computing will
be centralized around Data, Clouding Computing, as well as
Client Computing. Cloud Computing and Client Computing
will coexist and evolve hand in hand, while data management
(mapping, partitioning, querying, movement, caching,
replication, etc) will become more and more important for both
Cloud Computing and Client Computing with the increase of
data-intensive applications.

The critical role of Cloud Computing goes without saying, but
the importance of Client Computing cannot be overlooked
either for several reasons: 1) For security reasons, people
might not be willing to run mission-critical applications on the
Cloud and send sensitive data to the Cloud for processing and
storage; 2) Users want to get their things done even when the
Internet and Cloud are down or the network communication is
slow; 3) With the advances of multi-core technology, the
coming decade will bring the possibilities of having a desktop
supercomputer with 100s to 1000s of hardware threads/cores.
Furthermore, many end-users will have various hardware-
driven end-functionalities, such as visualization and
multimedia playback, which will typically run locally.

Figure 4 The triangle model of next-generation Internet Computing.

The importance of data has caught the attention of the Grid
community for the past decade; Data Grids [10] have been
specifically designed to tackle data intensive applications in
Grid environments, with the concept of virtual data [22]
playing a crucial role. Virtual data captures the relationship
between data, programs and computations and prescribes
various abstractions that a data grid can provide: location
transparency where data can be requested without regard to
data location, a distributed metadata catalog is engaged to keep
track of the locations of each piece of data (along with its
replicas) across grid sites, and privacy and access control are
enforced; materialization transparency: data can be either re-
computed on the fly or transferred upon request, depending on
the availability of the data and the cost to re-compute. There is
also representation transparency where data can be consumed
and produced no matter what their actual physical formats and
storage are, data are mapped into some abstract structural
representation and manipulated in that way.

Data Locality: As CPU cycles become cheaper and data sets
double in size every year, the main challenge for efficient

scaling of applications is the location of the data relative to the
available computational resources – moving the data
repeatedly to distant CPUs is becoming the bottleneck. [46]
There are large differences in IO speeds from local disk
storage to wide area networks, which can drastically affect
application performance. To achieve good scalability at
Internet scales for Clouds, Grids, and their applications, data
must be distributed over many computers, and computations
must be steered towards the best place to execute in order to
minimize the communication costs [46]. Google’s MapReduce
[13] system runs on top of the Google File System, within
which data is loaded, partitioned into chunks, and each chunk
replicated. Thus data processing is collocated with data storage:
when a file needs to be processed, the job scheduler consults a
storage metadata service to get the host node for each chunk,
and then schedules a “map” process on that node, so that data
locality is exploited efficiently. In Grids, data storage usually
relies on a shared file systems (e.g. NFS, GPFS, PVFS, Luster),
where data locality cannot be easily applied. One approach is
to improve schedulers to be data-aware, and to be able to
leverage data locality information when scheduling
computational tasks; this approach has shown to improve job
turn-around time significantly [41].

Combining compute and data management: Even more
critical is the combination of the compute and data resource
management, which leverages data locality in access patterns
to minimize the amount of data movement and improve end-
application performance and scalability. Attempting to address
the storage and computational problems separately forces
much data movement between computational and storage
resources, which will not scale to tomorrow’s peta-scale
datasets and millions of processors, and will yield significant
underutilization of the raw resources. It is important to
schedule computational tasks close to the data, and to
understand the costs of moving the work as opposed to moving
the data. Data-aware schedulers and dispersing data close to
processors is critical in achieving good scalability and
performance. Finally, as the number of processor-cores is
increasing (the largest supercomputers today have over 200K
processors and Grids surpassing 100K processors), there is an
ever-growing emphasis for support of high throughput
computing with high sustainable dispatch and execution rates.
We believe that data management architectures are important
to ensure that the data management implementations scale to
the required dataset sizes in the number of files, objects, and
dataset disk space usage while at the same time, ensuring that
data element information can be retrieved fast and efficiently.
Grids have been making progress in combining compute and
data management with data-aware schedulers [41], but we
believe that Clouds will face significant challenges in handling
data-intensive applications without serious efforts invested in
harnessing the data locality of application access patterns.
Although data-intensive applications may not be typical
applications that Clouds deal with today, as the scales of
Clouds grow, it may just be a matter of time for many Clouds.

Virtualization: Virtualization has become an indispensable
ingredient for almost every Cloud, the most obvious reasons
are for abstraction and encapsulation. Just like threads were
introduced to provide users the “illusion” as if the computer
were running all the threads simultaneously, and each thread

were using all the available resources, Clouds need to run
multiple (or even up to thousands or millions of) user
applications, and all the applications appear to the users as if
they were running simultaneously and could use all the
available resources in the Cloud. Virtualization provides the
necessary abstraction such that the underlying fabric (raw
compute, storage, network resources) can be unified as a pool
of resources and resource overlays (e.g. data storage services,
Web hosting environments) can be built on top of them.
Virtualization also enables each application to be encapsulated
such that they can be configured, deployed, started, migrated,
suspended, resumed, stopped, etc., and thus provides better
security, manageability, and isolation.

There are also many other reasons that Clouds tend to adopt
virtualization: 1) server and application consolidation, as
multiple applications can be run on the same server, resources
can be utilized more efficiently; 2) configurability, as the
resource requirements for various applications could differ
significantly, some require large storage, some compute, in
order to dynamically configure and bundle (aggregate)
resources for various needs, virtualization is necessary as this
is not achievable at the hardware level; 3) increased
application availability, virtualization allows quick recovery
from unplanned outages, as virtual environments can be
backed up and migrated with no interruption in service; 4)
improved responsiveness: resource provisioning, monitoring
and maintenance can be automated, and common resources can
be cached and reused. All these features of virtualization
provide the basis for Clouds to meet stringent SLA (Service
Level Agreement) requirements in a business setting, which
cannot be easily achieved with a non-virtualized environment
in a cost-effective manner as systems would have to be over-
provisioned to handle peak load and waste resources in idle
periods. After all, a virtualization infrastructure can be just
thought as a mapping from IT resources to business needs.

Grids do not rely on virtualization as much as Clouds do, but
that might be more due to policy and having each individual
organization maintain full control of their resources (i.e. by not
virtualizing them). However, there are efforts in Grids to use
virtualization as well, such as Nimbus [56] (previously known
as the Virtual Workspace Service [26]), which provide the
same abstraction and dynamic deployment capabilities. A
virtual workspace is an execution environment that can be
deployed dynamically and securely in the Grid. Nimbus
provides two levels of guarantees: 1) quality of life: users get
exactly the (software) environment they need, and 2) quality of
service: provision and guarantee all the resources the
workspace needs to function correctly (CPU, memory, disk,
bandwidth, availability), allowing for dynamic renegotiation to
reflect changing requirements and conditions. In addition,
Nimbus can also provision a virtual cluster for Grid
applications (e.g. a batch scheduler, or a workflow system),
which is also dynamically configurable, a growing trend in
Grid Computing.

It is also worth noting that virtualization – in the past – had
significant performance losses for some applications, which
has been one of the primary disadvantage of using
virtualization. However, over the past few years, processor
manufacturers such as AMD and Intel have been introducing

hardware support for virtualization, which is helping narrow
the performance gap between applications performance on
virtualized resources as it compares with that on traditional
operating systems without virtualization.

Monitoring: Another challenge that virtualization brings to
Clouds is the potential difficulty in fine-control over the
monitoring of resources. Although many Grids (such as
TeraGrid) also enforce restrictions on what kind of sensors or
long-running services a user can launch, Cloud monitoring is
not as straightforward as in Grids, because Grids in general
have a different trust model in which users via their identity
delegation can access and browse resources at different Grid
sites, and Grid resources are not highly abstracted and
virtualized as in Clouds; for example, the Ganglia [25]
distributed (and hierarchical) monitoring system can monitor a
federation of clusters and Grids and has seen wide adoption in
the Grid community. In a Cloud, different levels of services
can be offered to an end user, the user is only exposed to a pre-
defined API, and the lower level resources are opaque to the
user (especially at the PaaS and SaaS level, although some
providers may choose to expose monitoring information at
these levels). The user does not have the liberty to deploy her
own monitoring infrastructure, and the limited information
returned to the user may not provide the necessary level of
details for her to figure out what the resource status is. The
same problems potentially exist for Cloud developers and
administrators, as the abstract/unified resources usually go
through virtualization and some other level of encapsulation,
and tracking the issues down the software/hardware stack
might be more difficult. Essentially monitoring in Clouds
requires a fine balance of business application monitoring,
enterprise server management, virtual machine monitoring, and
hardware maintenance, and will be a significant challenge for
Cloud Computing as it sees wider adoption and deployments.
On the other hand, monitoring can be argued to be less
important in Clouds, as users are interacting with a more
abstract layer that is potentially more sophisticated; this
abstract layer could respond to failures and quality of service
(QoS) requirements automatically in a general-purpose way
irrespective of application logic. In the near future, user-end
monitoring might be a significant challenge for Clouds, but it
will become less important as Clouds become more
sophisticated and more self-maintained and self-healing.

Provenance: Provenance refers to the derivation history of a
data product, including all the data sources, intermediate data
products, and the procedures that were applied to produce the
data product. Provenance information is vital in understanding,
discovering, validating, and sharing a certain data product as
well as the applications and programs used to derive it. In
some disciplines such as finance and medicine, it is also
mandatory to provide what is called an “audit trail” for
audition purpose. In Grids, provenance management has been
in general built into a workflow system, from early pioneers
such as Chimera [22], to modern scientific workflow systems,
such as Swift [53], Kepler [35], and VIEW [34] to support the
discovery and reproducibility of scientific results. It has also
been built as a standalone service, such as PreServ [29], to
facilitate the integration of provenance component in more
general computing models, and deal with trust issues in
provenance assertion. Using provenance information, scientists

can debug workflow execution, validate or invalidate scientific
results, and guide future workflow design and data exploration.
While provenance has first shown its promise in scientific
workflow systems [22] and database systems [47], a long-term
vision is that provenance will be useful in other systems as
well, necessitating the development of a standard, open, and
universal representation and query model. Currently, the
provenance challenge series [39] and the open provenance
model initiative [38] provide the active forums for these
standardization effort and interaction. On the other hand,
Clouds are becoming the future playground for e-science
research, and provenance management is extremely important
in order to track the processes and support the reproducibility
of scientific results [45]. Provenance is still an unexplored area
in Cloud environments, in which we need to deal with even
more challenging issues such as tracking data production
across different service providers (with different platform
visibility and access policies) and across different software and
hardware abstraction layers within one provider. In other
words, capturing and managing provenance in Cloud
environments may prove to be more difficult than in Grids,
since in the latter there are already a few provenance systems
and initiatives, however scalable provenance querying [55] and
secure access of provenance information are still open
problems for both Grids and Clouds environments.

2.4 Programming Model
Although programming model in Grid environments does not
differ fundamentally from traditional parallel and distributed
environments, it is obviously complicated by issues such as
multiple administrative domains; large variations in resource
heterogeneity, stability and performance; exception handling in
highly dynamic (in that resources can join and leave pretty
much at any time) environments, etc. Grids primarily target
large-scale scientific computations, so it must scale to leverage
large number/amount of resources, and we would also
naturally want to make programs run fast and efficient in Grid
environments, and programs also need to finish correctly, so
reliability and fault tolerance must be considered.

We briefly discuss here some general programming models in
Grids. MPI (Message Passing Interface) [36] is the most
commonly used programming model in parallel computing, in
which a set of tasks use their own local memory during
computation and communicate by sending and receiving
messages. MPICH-G2 [32] is a Grid enabled implementation
of MPI. It gives the familiar interface of MPI while providing
integration with the Globus Toolkit. Coordination languages
also allow a number of possibly heterogeneous components to
communicate and interact, offering facilities for the
specification, interaction, and dynamic composition of
distributed (concurrent) components. For instance, Linda [1]
defines a set of coordination primitives to put and retrieve
tuples from a shared dataspace called the tuple space. It has
been shown to be straightforward to use such primitives to
implement a master-worker parallel scheduler. The Ninf-G
GridRPC [37] system integrates a Grid RPC (Remote
Procedure Call) layer on top of the Globus toolkit. It publishes
interfaces and function libraries in MDS, and utilizes GRAM
to invoke remote executables. In Grids, however, many
applications are loosely coupled in that the output of one may

be passed as input to one or more others—for example, as a
file, or via a Web Services invocation. While such “loosely
coupled” computations can involve large amounts of
computation and communication, the concerns of the
programmer tend to be different from those in traditional high
performance computing, being focused on management issues
relating to the large numbers of datasets and tasks rather than
the optimization of interprocessor communication. In such
cases, workflow systems [54] suit better in the specification
and execution of such applications. More specifically, a
workflow system allows the composition of individual (single
step) components into a complex dependency graph, and it
governs the flow of data and/or control through these
components. An example is the Swift system [53], which
bridges scientific workflows with parallel computing. It is a
parallel programming tool for rapid and reliable specification,
execution, and management of large-scale science and
engineering workflows. The Swift runtime system relies on the
CoG Karajan [33] workflow engine for efficient scheduling
and load balancing, and it integrates the Falkon light-weight
task execution service for optimized task throughput and
resource efficiency [40]. WSRF (Web Services Resource
Framework) has emerged from OGSA (Open Grid Service
Architecture) [11] as more and more Grid applications are
developed as services. WSRF allows Web Services to become
stateful, and it provides a set of operations to set and retrieve
the states (resources). The Globus Toolkit version 4 contains
Java and C implementations of WSRF, most of the Globus
core services have been re-engineered to build around WSRF,
these altogether will enable service oriented Grid programming
model.

MapReduce [13] is only yet another parallel programming
model, providing a programming model and runtime system
for the processing of large datasets, and it is based on a simple
model with just two key functions: “map” and “reduce,”
borrowed from functional languages. The map function applies
a specific operation to each of a set of items, producing a new
set of items; a reduce function performs aggregation on a set of
items. The MapReduce runtime system automatically
partitions input data and schedules the execution of programs
in a large cluster of commodity machines. The system is made
fault tolerant by checking worker nodes periodically and
reassigning failed jobs to other worker nodes. Sawzall is an
interpreted language that builds on MapReduce and separates
the filtering and aggregation phases for more concise program
specification and better parallelization. Hadoop [30] is the
open source implementation of the MapReduce model, and Pig
is a declarative programming language offered on top of
Hadoop. Microsoft has developed the Cosmos distributed
storage system and Dryad processing framework, and offers
DryadLINQ [31] and Scope as declarative programming model
on top of the storage and computing infrastructure.
DryadLINQ uses the object oriented LINQ query syntax where
Scope provides basic operators similar to those of SQL such as
Select, Join, Aggregation etc, both translate the abstract
specification into detailed execution plan.

Mesh-up’s and scripting (Java Script, PHP, Python etc) have
been taking the place of a workflow system in the Cloud world,
since there is no easy way to integrate services and
applications from various providers. They are essentially data

integration approaches, because they take outputs from one
service/application, transform them and feed into another.
Google App Engine uses a modified Python runtime and
chooses Python scripting language for Web application
development, the interface to its underlying BigTable storage
system is some proprietary query language (named, as you
would think, GQL) that is reminiscent of SQL, although all
these will probably change. Clouds (such as Amazon Web
Services, Microsoft’s Azure Services Platform) have generally
adopted Web Services APIs where users access, configure and
program Cloud services using pre-defined APIs exposed as
Web services, and HTTP and SOAP are the common protocols
chosen for such services. Although Clouds adopted some
common communication protocols such as HTTP and SOAP,
the integration and interoperability of all the services and
applications remain the biggest challenge, as users need to tap
into a federation of Clouds instead of a single Cloud provider.

2.5 Application Model
Grids generally support many different kinds of applications,
ranging from high performance computing (HPC) to high
throughput computing (HTC). HPC applications are efficient
at executing tightly coupled parallel jobs within a particular
machine with low-latency interconnects and are generally not
executed across a wide area network Grid; these applications
typically use message passing interface (MPI) to achieve the
needed inter-process communication. On the other hand, Grids
have also seen great success in the execution of more loosely
coupled applications that tend to be managed and executed
through workflow systems or other sophisticated and complex
applications. Related to HTC applications loosely coupled
nature, there are other application classes, such Multiple
Program Multiple Data (MPMD), MTC, capacity computing,
utility computing, and embarrassingly parallel, each with their
own niches [42]. These loosely coupled applications can be
composed of many tasks (both independent and dependent
tasks) that can be individually scheduled on many different
computing resources across multiple administrative boundaries
to achieve some larger application goal. Tasks may be small or
large, uniprocessor or multiprocessor, compute-intensive or
data-intensive. The set of tasks may be static or dynamic,
homogeneous or heterogeneous, loosely or tightly coupled.
The aggregate number of tasks, quantity of computing, and
volumes of data could be small but also extremely large.

On the other hand, Cloud Computing could in principle cater
to a similar set of applications. The one exception that will
likely be hard to achieve in Cloud Computing (but has had
much success in Grids) are HPC applications that require fast
and low latency network interconnects for efficient scaling to
many processors. As Cloud Computing is still in its infancy,
the applications that will run on Clouds are not well defined,
but we can certainly characterize them to be loosely coupled,
transaction oriented (small tasks in the order of milliseconds to
seconds), and likely to be interactive (as opposed to batch-
scheduled as they are currently in Grids).

Another emerging class of applications in Grids is scientific
gateways [51], which are front-ends to a variety of applications
that can be anything from loosely-coupled to tightly-coupled.
A Science Gateway is a community-developed set of tools,
applications, and data collections that are integrated via a

portal or a suite of applications. Gateways provide access to a
variety of capabilities including workflows, visualization,
resource discovery and job execution services through a
browser-based user interface (which can arguably hide much
of the complexities). Scientific gateways are beginning to
adopt a wide variety of Web 2.0 technologies, but to date,
much of the developments in Grids and Web 2.0 have been
made in parallel with little interaction between them. These
new technologies are important enhancements to the ways
gateways interact with services and provide rich user
interactivity. Although scientific gateways have only emerged
in Grids recently, Clouds seem to have adopted the use of
gateways to Cloud resources almost exclusively for end-user
interaction. The browser and Web 2.0 technologies will
undoubtedly play a central role on how users will interact with
Grids and Clouds in the future.

2.6 Security Model
Clouds mostly comprise dedicated data centers belonging to
the same organization, and within each data center, hardware
and software configurations, and supporting platforms are in
general more homogeneous as compared with those in Grid
environments. Interoperability can become a serious issue for
cross-data center, cross-administration domain interactions,
imagine running your accounting service in Amazon EC2
while your other business operations on Google infrastructure.
Grids however build on the assumption that resources are
heterogeneous and dynamic, and each Grid site may have its
own administration domain and operation autonomy. Thus,
security has been engineered in the fundamental Grid
infrastructure. The key issues considered are: single sign-on,
so that users can log on only once and have access to multiple
Grid sites, this will also facilitate accounting and auditing;
delegation, so that a program can be authorized to access
resources on a user’s behalf and it can further delegate to other
programs; privacy, integrity and segregation, resources
belonging to one user cannot be accessed by unauthorized
users, and cannot be tampered during transfer; coordinated
resource allocation, reservation, and sharing, taking into
consideration of both global and local resource usage policies.
The public-key based GSI (Grid Security Infrastructure)
protocols are used for authentication, communication
protection, and authorization. Furthermore, CAS (Community
Authorization Service) is designed for advanced resource
authorization within and across communities. Gruber (A Grid
Resource Usage SLA Broker) [14] is an example that has
distributed policy enforcement points to enforce both local
usage policies and global SLAs (Service Level Agreement),
which allows resources at individual sites to be efficiently
shared in multi-site, multi-VO environments.

Currently, the security model for Clouds seems to be relatively
simpler and less secure than the security model adopted by
Grids. Cloud infrastructure typically rely on Web forms (over
SSL) to create and manage account information for end-users,
and allows users to reset their passwords and receive new
passwords via Emails in an unsafe and unencrypted
communication. Note that new users could use Clouds
relatively easily and almost instantly, with a credit card and/or
email address. To contrast this, Grids are stricter about its
security. For example, although web forms are used to manage

user accounts, sensitive information about new accounts and
passwords requires also a person to person conversation to
verify the person, perhaps verification from a sponsoring
person who already has an account, and passwords will only be
faxed or mailed, but under no circumstance will they be
emailed. The Grid approach to security might be more time
consuming, but it adds an extra level of security to help
prevent unauthorized access.

Security is one of the largest concerns for the adoption of
Cloud Computing. We outline seven risks a Cloud user should
raise with vendors before committing [6]: 1) Privileged user
access: sensitive data processed outside the enterprise needs
the assurance that they are only accessible and propagated to
privileged users; 2) Regulatory compliance: a customer needs
to verify if a Cloud provider has external audits and security
certifications and if their infrastructure complies with some
regulatory security requirements; 3) Data location: since a
customer will not know where her data will be stored, it is
important that the Cloud provider commit to storing and
processing data in specific jurisdictions and to obey local
privacy requirements on behalf of the customer; 4) Data
segregation: one needs to ensure that one customer’s data is
fully segregated from another customer’s data; 5) Recovery: it
is important that the Cloud provider has an efficient replication
and recovery mechanism to restore data if a disaster occurs; 6)
Investigative support: Cloud services are especially difficult to
investigate, if this is important for a customer, then such
support needs to be ensured with a contractual commitment;
and 7) Long-term viability: your data should be viable even the
Cloud provider is acquired by another company.

3 Conclusions and lights to the future
In this paper, we show that Clouds and Grids share a lot
commonality in their vision, architecture and technology, but
they also differ in various aspects such as security,
programming model, business model, compute model, data
model, applications, and abstractions. We also identify
challenges and opportunities in both fields. We believe a close
comparison such as this can help the two communities
understand, share and evolve infrastructure and technology
within and across, and accelerate Cloud Computing from early
prototypes to production systems.

What does the future hold? We will hazard a few predictions,
based on our beliefs that the economics of computing will look
more and more like those of energy. Neither the energy nor the
computing grids of tomorrow will look like yesterday’s
electric power grid. Both will move towards a mix of micro-
production and large utilities, with increasing numbers of
small-scale producers (wind, solar, biomass, etc., for energy;
for computing, local clusters and embedded processors—in
shoes and walls) co-existing with large-scale regional
producers, and load being distributed among them dynamically.
Yes, computing isn’t really like electricity, but we do believe
that we will nevertheless see parallel evolution, driven by
similar forces.

In building this distributed “Cloud” or “Grid”, we will need to
support on-demand provisioning and configuration of
integrated “virtual systems” providing the precise capabilities
needed by an end-user. We will need to define protocols that

allow users and service providers to discover and hand off
demands to other providers, to monitor and manage their
reservations, and arrange payment. We will need tools for
managing both the underlying resources and the resulting
distributed computations. We will need the centralized scale of
today’s Cloud utilities, and the distribution and interoperability
of today’s Grid facilities.

Unfortunately, at least to date, the methods used to achieve
these goals in today’s commercial clouds have not been open
and general purpose, but instead been mostly proprietary and
specialized for the specific internal uses (e.g., large-scale data
analysis) of the companies that developed them. The idea that
we might want to enable interoperability between providers (as
in the electric power grid) has not yet surfaced. Grid
technologies and protocols speak precisely to these issues, and
should be considered.

Some of the required protocols and tools will come from the
smart people from the industry at Amazon, Google, Yahoo,
Microsoft, and IBM. Others will come from the smart people
from academia and government labs. Others will come from
those creating whatever we call this stuff after Grid and Cloud.
It will be interesting to see to what extent these different
communities manage to find common cause, or instead
proceed along parallel paths.

4 References
[1] S. Ahuja, N. Carriero, and D. Gelernter. “Linda and Friends”,

IEEE Computer 19 (8), 1986, pp. 26-34.
[2] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster,

C. Kesselman, S. Meder, V. Nefedova, D. Quesnal, S. Tuecke.
“Data Management and Transfer in High Performance
Computational Grid Environments”, Parallel Computing
Journal, Vol. 28 (5), May 2002, pp. 749-771.

[3] Amazon Elastic Compute Cloud (Amazon EC2),
http://aws.amazon.com/ec2, 2008.

[4] Amazon Simple Storage Service (Amazon S3),
http://aws.amazon.com/s3, 2008.

[5] B. Bode, D.M. Halstead, R. Kendall, Z. Lei, W. Hall, D.
Jackson. “The Portable Batch Scheduler and the Maui
Scheduler on Linux Clusters”, Usenix, 4th Annual Linux
Showcase & Conference, 2000.

[6] J. Brodkin. “Gartner: Seven cloud-computing security risks”,
http://www.networkworld.com/news/2008/070208-cloud.html, 2008.

[7] R. Buyya, D. Abramson, J. Giddy. “Nimrod/G: An Architecture
for a Resource Management and Scheduling System in a Global
Computational Grid”, IEEE Int. Conf. on High Performance
Computing in Asia-Pacific Region (HPC ASIA) 2000.

[8] R. Buyya, K. Bubendorfer. “Market Oriented Grid and Utility
Computing”, Wiley Press, New York, USA, 2008.

[9] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, “Storing
and Querying Scientific Workflow Provenance Metadata Using
an RDBMS”, in Proc. of the 2nd International Workshop on
Scientific Workflows and Business Workflow Standards in e-
Science, in conjunction with e-Science, pp.611-618, Bangalore,
India, December, 2007.

[10] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke.
“The Data Grid: Towards an Architecture for the Distributed
Management and Analysis of Large Scientific Datasets”, Jrnl.
of Network and Computer Applications, 23:187-200, 2001.

[11] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T.
Maguire, D. Snelling, S. Tuecke. “From Open Grid Services

Infrastructure to WS-Resource Framework: Refactoring &
Evolution,” March 5, 2004.

[12] S. Davidson, S. Boulakia, A. Eyal, B. Ludäscher, T. McPhillips,
S. Bowers, M. Anand, J. Freire, “Provenance in Scientific
Workflow Systems”, IEEE Data Eng. Bull. 30(4): 44-50 (2007).

[13] J. Dean, S. Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters”, Sixth Symposium on Operating
System Design and Implementation (OSDI04), 2004.

[14] C. Dumitrescu, I. Raicu, I. Foster. “The Design, Usage, and
Performance of GRUBER: A Grid uSLA-based Brokering
Infrastructure”, Intl. Journal of Grid Computing, 2007.

[15] Eucalyptus, http://eucalyptus.cs.ucsb.edu/, 2008.
[16] I. Foster, C. Kesselman. “Globus: A Metacomputing

Infrastructure Toolkit”, Intl J. Supercomputer Applications,
11(2):115-128, 1997.

[17] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A.
Roy. “A Distributed Resource Management Architecture that
Supports Advance Reservations and Co-Allocation”, Intl
Workshop on Quality of Service, 1999.

[18] I. Foster, C. Kesselman, S. Tuecke. The anatomy of the Grid:
Enabling scalable virtual organization. The Intl. Jrnl. of High
Performance Computing Applications, 15(3):200--222, 2001.

[19] I. Foster. What is the Grid? A Three Point Checklist, July 2002.
[20] I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of

the Grid: An Open Grid Services Architecture for Distributed
Systems Integration. Globus Project, 2002.

[21] I. Foster, C. Kesselman, L. Pearlman, S. Tuecke, and V. Welch.
“The Community Authorization Service: Status and Future,” In
Proc. of Computing in High Energy Physics (CHEP), 2003.

[22] I. Foster, J. Vöckler, M. Wilde, Y. Zhao, “Chimera: A Virtual
Data System for Representing, Querying, and Automating Data
Derivation”, SSDBM 2002: 37-46.

[23] I. Foster. “Globus Toolkit Version 4: Software for Service-
Oriented Systems.” IFIP Int. Conf. on Network and Parallel
Computing, Springer-Verlag LNCS 3779, pp 2-13, 2006.

[24] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
“Condor-G: A Computation Management Agent for Multi-
Institutional Grids,” Cluster Computing, 5 (3). 237-246. 2002.

[25] Ganglia, http://sourceforge.net/projects/ganglia/, 2008.
[26] K. Keahey, I. Foster, T. Freeman, and X. Zhang. “Virtual

Workspaces: Achieving Quality of Service and Quality of Life
in the Grid”, The Scientific Programming Journal, 2006.

[27] The Globus Security Team. “Globus Toolkit Version 4 Grid
Security Infrastructure: A Standards Perspective,” Technical
Report, Argonne National Laboratory, MCS, 2005.

[28] Google App Engine, http://code.google.com/appengine/, 2008.
[29] P. Groth, S. Miles, W. Fang, S. Wong, K. Zauner, L. Moreau.

“Recording and using provenance in a protein compressibility
experiment”, in Proceedings of the 14th IEEE Int. Symposium
on High Performance Distributed Computing (HPDC), 2005.

[30] Hadoop, hadoop.apache.org/core/, 2008.
[31] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly. “Dryad:

Distributed Data-Parallel Programs from Sequential Building
Blocks”, Euro. Conf. on Computer Systems (EuroSys), 2007.

[32] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-
Enabled Implementation of the Message Passing Interface.
Journal of Parallel and Distributed Computing, 2003.

[33] G.v. Laszewski, M. Hategan, D. Kodeboyina. “Java CoG Kit
Workflow”, Taylor, I.J., Workflows for eScience, 2007.

[34] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, and F.
Fotouhi, “Service-Oriented Architecture for VIEW: a Visual
Scientific Workflow Management System”, IEEE International
Conference on Services Computing (SCC), pp.335-342, 2008.

[35] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M.
Jones, E. Lee, J. Tao, Y. Zhao, “Scientific workflow
management and the Kepler system. Concurrency and
Computation: Practice and Experience”, 18(10).

[36] M.P.I. Forum. “MPI: A Message-Passing Interface Standard”,
1994.

[37] H. Nakada, Y. Tanaka, S. Matsuoka, S. Sekiguchi. “Ninf-G: a
GridRPC system on the Globus toolkit”, Grid Computing:
Making the Global Infrastructure a Reality, pp. 625--638, 2003.

[38] Open provenance model initiative,
http://twiki.ipaw.info/bin/view/Challenge/OpenProvenanceModelReview, 2008.

[39] The provenance challenge series:
http://twiki.ipaw.info/bin/view/Challenge/, 2008.

[40] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde. “Falkon:
a Fast and Light-weight tasK executiON framework”,
IEEE/ACM SuperComputing 2007.

[41] I. Raicu, Y. Zhao, I. Foster, A. Szalay. “Accelerating Large-
scale Data Exploration through Data Diffusion”, International
Workshop on Data-Aware Distributed Computing 2008.

[42] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra,
B. Clifford. “Towards Loosely-Coupled Programming on
Petascale Systems”, IEEE/ACM Supercomputing 2008.

[43] J. M. Schopf, I. Raicu, L. Pearlman, N. Miller, C. Kesselman, I.
Foster, M. D’Arcy. “Monitoring and Discovery in a Web
Services Framework: Functionality and Performance of Globus
Toolkit MDS4”, Technical Report, Argonne National
Laboratory, MCS Preprint #ANL/MCS-P1315-0106, 2006.

[44] J. Silvestre. “Economies and Diseconomies of Scale,” The New
Palgrave: A Dictionary of Economics, v. 2, pp. 80–84, 1987.

[45] Y. Simmhan, Beth Plale, Dennis Gannon. “A survey of data
provenance in e-science”, SIGMOD Record 34(3): 31-36, 2005.

[46] A. Szalay, A. Bunn, J. Gray, I. Foster, I. Raicu. “The
Importance of Data Locality in Distributed Computing
Applications”, NSF Workflow Workshop 2006.

[47] W. C. Tan. “Provenance in databases: Past, current, and future”,
IEEE Data Eng. Bull., 30(4):3–12, 2007.

[48] D. Thain, T. Tannenbaum, M. Livny, “Distributed Computing
in Practice: The Condor Experience” Concurrency and
Computation: Practice and Experience, Vol. 17, No. 2-4, pages
323-356, February-April, 2005.

[49] “Twenty Experts Define Cloud Computing”, SYS-CON Media
Inc, http://cloudcomputing.sys-con.com/read/612375_p.htm, 2008.

[50] “What is Cloud Computing?”, Whatis.com.
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci1287881,00.html, 2008.

[51] N. Wilkins-Diehr: Special Issue: Science Gateways - Common
Community Interfaces to Grid Resources. Concurrency and
Computation: Practice and Experience 19(6): 743-749 (2007)

[52] Y. Zhao, M. Wilde, I. Foster, J. Voeckler, J. Dobson, E. Gilbert,
T. Jordan, E. Quigg. “Virtual Data Grid Middleware Services
for Data-Intensive Science”, Concurrency and Computation:
Practice and Experience, 2005.

[53] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von von-
Laszewski, I. Raicu, T. Stef-Praun, and M. Wilde. “Swift: Fast,
reliable, loosely coupled parallel computation”, IEEE Int.
Workshop on Scientific Workflows, pages 199–206, 2007.

[54] Y. Zhao, I. Raicu, I. Foster. “Scientific Workflow Systems for
21st Century, New Bottle or New Wine?” IEEE Workshop on
Scientific Workflows, 2008.

[55] Y. Zhao and S. Lu, “A Logic Programming Approach to
Scientific Workflow Provenance Querying”, IPAW, LNCS
Volume 5272, pp.31-44, 2008.

[56] K. Keahey, T. Freeman. “Contextualization: Providing One-
Click Virtual Clusters”, to appear, eScience 2008, 2008.

CHM
高亮

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

