
Spotlight

Current Solutions for
Web Service Composition

I n service-oriented computing (SOC), develop-
ers use services as fundamental elements in
their application-development processes. Ser-

vices are platform- and network-independent
operations that clients or other services invoke. To
operate in an SOC environment, services must
overtly define their properties in a standard,
machine-readable format. SOC thus offers three
native capabilities: description, discovery, and
communication.1 Web services are a typical SOC
example: developers implement SOC native capa-
bilities using Web Services Description Language
(for description), Universal Description, Discov-
ery, and Integration (for discovery), and SOAP (for
communication).2

To create applications, SOC developers use ser-
vice composition, which they introduce on top of
SOC’s native capabilities. Developers and users can
then solve complex problems by combining avail-
able basic services and ordering them to best suit
their problem requirements. Service composition
accelerates rapid application development, service
reuse, and complex service consummation. Cur-
rently, however, service composition isn’t stan-
dardized, nor does it include definitions of the key
requirements that every composition approach
must satisfy (such as scalability, dependability, and
correctness). If the SOC paradigm is to succeed and
become the dominant architecture of future dis-
tributed systems, we must provide a stable and
dependable service composition solution.

Here, we offer a survey of existing proposals for
Web service composition, and compare them with
respect to four key requirements, which we discuss
in the next section. By offering this overview and
systematization of key properties, as well as a con-
structive critique of existing approaches, we hope to
help service-composition designers and developers
focus their efforts and deliver more usable and
durable solutions, while also addressing the tech-
nology’s critical needs.

Service
Composition Requirements
The complexities of distributed systems and
increasing trust barriers have influenced SOC evo-
lution at the hardware, operating system, and
application layers. Although modern operating sys-
tems can also be seen as sets of collaborating ser-
vices, in this survey, we focus on the application
layer. From the developer’s perspective, service
composition offers reuse possibilities. From the
user’s perspective, it offers seamless access to a
variety of complex services.

Service composition requirements differ from
those of mainstream component-based software
development. In place of access to documentation
or code (either source or binary), SOC application
developers and users have access only to WSDL’s
rudimentary functional descriptions. Services exe-
cute in different containers, separated by firewalls
and other trust barriers. A composition mechanism

IEEE INTERNET COMPUTING 1089-7801/04/$20.00 © 2004 IEEE Published by the IEEE Computer Society NOVEMBER • DECEMBER 2004 51

Web service composition lets developers create applications on top of service-

oriented computing’s native description, discovery, and communication

capabilities. Such applications are rapidly deployable and offer developers reuse

possibilities and users seamless access to a variety of complex services. There are

many existing approaches to service composition, ranging from abstract methods

to those aiming to be industry standards. The authors describe four key issues for

Web service composition.

Editor : Siobhán Clarke • s iobhan .c la rke@cs . t cd . i e

Nikola Milanovic and Miroslaw Malek • Humboldt University, Berlin

CHM
高亮

CHM
高亮

CHM
高亮

must therefore satisfy several requirements: con-
nectivity, nonfunctional quality-of-service prop-
erties, correctness, and scalability.

Every composition approach must guarantee
connectivity. With reliable connectivity, we can
determine which services are composed and reason
about the input and output messages. Because Web
services are based on message passing, however,
developers must also address nonfunctional QoS
properties, such as timeliness, security, and depend-
ability. Composition correctness requires verifica-
tion of the composed service’s properties, such as
security or dependability. Finally, because compli-
cated business transactions are likely to involve
multiple services in a complex invocation chain,
composition frameworks must scale with the num-
ber of composed services.

We can illustrate the need for such require-
ments with two examples. First, suppose we have a
trusted and an untrusted service, where the service
architecture defines trust. What happens when we
compose these services in sequence? Is this com-
position trusted, untrusted, or something in
between? It’s crucial that we know whether our
application is secure and dependable. And what
happens when we compose two trusted services?
Do we assume that the composition of trusted ser-
vices will also be trusted?

Another example that demonstrates the need for
nonfunctional properties is a composition’s timeli-
ness. Suppose we have a simple handshaking
example with two partner services, in which one
wants to invoke a method on the other. The client
service expects to be notified when it can apply
(invoke a method), while the provider service
expects to be notified that the client wants to uti-
lize its service. Unless its developers understand
such requirements in advance, the composition will
not produce useful or expected results.

Web Service
Composition Approaches
Once Web services’ native capabilities were fully
developed, service composition approaches began
emerging. Because the first-generation composi-
tion languages — IBM’s Web Service Flow Lan-
guage (WSFL) and BEA Systems’ Web Services
Choreography Interface (WSCI) — were incompat-
ible, researchers developed second-generation lan-
guages, such as the Business Process Execution
Language for Web Services (BPEL4WS, or BPEL for
short), which combines WSFL and WSCI with
Microsoft’s XLANG specification. Nonetheless, the

Web Services Architecture Stack still lacks a
process-layer standard for aggregation, choreog-
raphy, and composition (www.w3.org/2002/ws).
Here, we examine several of the proposals for Web
services composition, comparing how they meet
requirements for connectivity, nonfunctional prop-
erties, correctness, and scalability.

BPEL
BPEL (www.ibm.com/developerworks/library/
ws-bpel) is an XML language that supports process-
oriented service composition.3 Developed by BEA,
IBM, Microsoft, SAP, and Siebel, BPEL is currently
being standardized by the Organization for the
Advancement of Structured Information Standards
(www.oasis-open.org). (Sun Microsystems recently
joined the OASIS technical committee as well.)

BPEL composition interacts with a Web services’
subset to achieve a given a task. In BPEL, the com-
position result is called a process, participating ser-
vices are partners, and message exchange or inter-
mediate result transformation is called an activity.
A process thus consists of a set of activities. A
process interacts with external partner services
through a WSDL interface.

To define a process, we use

• a BPEL source file (.bpel), which describes
activities;

• a process interface (.wsdl), which describes
ports of a composed service; and

• an optional deployment descriptor (.xml), which
contains the partner services’ physical locations
(a partner service’s implementation and loca-
tion can be changed without modifying the
source file).

BPEL has several element groups, but the basic
ones are

• process initiation: <process>
• definition of services participating in compo-

sition: <partnerLink>
• synchronous and asynchronous calls:

<invoke>, <invoke>... <receive>
• intermediate variables and results manipula-

tion: <variable>, <assign>, <copy>
• error handling: <scope>, <faultHandlers>
• sequential and parallel execution:

<sequence>, <flow>
• logic control: <switch>

As an example, we’ll model the composition of

52 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

three services. Service A is called synchronously
and starts a process. Two asynchronous services,
B and C, are then called in parallel using Service
A’s output as their input. The process waits for
their completion and then makes a decision based
on the results. The stripped BPEL code for this
composition follows (for clarity, we’ve omitted
much of the code and assumed that all services
offer only one operation at one port):

<process name=“test”>
<partnerLinks>
<partnerLink name=“client”/>
<partnerLink name=“serviceA”/>
<partnerLink name=“serviceB”/>
<partnerLink name=“serviceC”/>

</partnerLinks>
<variables>
<variable name=“processInput”/>
<variable name=“AInput”/>
<variable name=“AOutput”/>
<variable name=“BCInput”/>
<variable name=“BOutput”/>
<variable name=“COutput”/>
<variable name=“processOutput”/>
<variable name=“AError”/>

</variables>
<sequence>
<receive name=“receiveInput” vari-

able=“input”/>
<assign><copy>
<from variable=“processInput”/>
<to variable=“AInput”/>

</copy></assign>
<scope>
<faultHandlers>

<catch faultName=“faultA” fault-
Variable=“AError”/>

</faultHandlers>
<sequence>

<invoke name=“invokeA” partner-
Link=“serviceA”

inputVariable=“AInput” output-
Variable=“AOutput”/>

</sequence>
</scope>
<assign><copy>
<from variable=“AOutput”/>
<to variable=“BCInput”/>

</copy></assign>
<flow>
<sequence>

<invoke name=“invokeB” partner-

Link=“serviceB”
inputVariable=“BCInput”/>
<receive name=“receive_invokeB”

partnerLink=“serviceB”
variable=“BOutput”/>

</sequence>
<sequence>

<invoke name=“invokeC” partner-
Link=“serviceC”

inputVariable=“BCInput”/>
<receive name=“receive_invokeC”

partnerLink=“serviceC”
variable=“COutput”/>

</sequence>
</flow>
<switch><case>
<!— assign value to processOutput —>

</case></switch>
<invoke name=“reply”

partnerLink=“client”
inputVariable=“processOutput”/>

</sequence>
</process>

Researchers recently released BPELJ (www
-106.ibm.com/developerworks/webservices/library/
ws-bpelj/), a combination of BPEL and Java that
lets developers include Java code inside BPEL
code. Developers can thus use Java “snippets” to
perform intermediate transformations such as
value calculations within documents; document
construction and deconstruction using informa-
tion from other documents and variables; and
value calculations for flow controls. They can
also perform side-effects without creating sepa-
rate Web services. A snippet can assume it’s run-
ning inside a J2EE container. It has access to all
variables and partner links that are in its loca-
tion’s scope. We can use a snippet, for example,
to write the <switch> construct omitted from the
previous example:

<bpelj:snippet>
<bpelj:code>
if (OutputB > OutputC)
processOutput = outputB;

else
processOutput = outputC;

</bpelj:code>
</bpelj:snippet>

Developers can use BPEL with two other
specifications:

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 53

Web Services Composition

CHM
高亮

• Web Services-Coordination (www-106.ibm.
com/developerworks/library/ws-coor/) coordi-
nates Web services’ actions when a consistent
agreement must be reached on the service
activities’ outcome.

• Web Services-Transaction (www-106.ibm.
com/developerworks/library/ws-transpec/)
defines Web services’ transactional behavior.

There are several BPEL orchestration server imple-
mentations for both J2EE and .NET platforms,
including IBM WebSphere (www-306.ibm.com/
software/info1/websphere), Oracle BPEL Process
Manager (formerly Collaxa BPEL Server; see www.
oracle.com/technology/products/ias/bpel/), Mic-
rosoft BizTalk 2004 (www.microsoft.com/biztalk),
OpenStorm ChoreoServer (www.openstorm.com),
and Active BPEL (www.activebpel.org).

Semantic Web (OWL-S)
The Semantic Web vision is to make Web resources
accessible by content as well as by keywords. Web
services play an important role in this: users and
software agents should be able to discover, com-
pose, and invoke content using complex services.
The DARPA Agent Markup Language (DAML)
extends XML and the Resource Description Frame-
work (RDF) to provide a set of constructs for cre-
ating machine-readable ontologies and markup
information. The DAML program’s Semantic Web
contribution is the Web Ontology Language for
Services (www.daml.org/services). OWL-S (previ-
ously known as DAML-S) is a services ontology
that enables automatic service discovery, invoca-
tion, composition, interoperation, and execution
monitoring.4

OWL-S models services using a three-part
ontology:

• a service profile describes what the service
requires from users and what it gives them;

• a service model specifies how the service works;
and

• a service grounding gives information on how
to use the service.

The process model is a service model subclass that
describes a service in terms of inputs, outputs, pre-
conditions, postconditions, and — if necessary —
its own subprocesses. In the process model, we can
describe composite processes and their dependen-
cies and interactions. OWL-S distinguishes three
types of processes: atomic, which have no sub-

processes; simple, which are not directly invoca-
ble and are used as an abstraction element for
either atomic or composite processes; and com-
posite, which consist of subprocesses. Constituent
processes are specified using flow-control con-
structs: sequence, split, split+join,
unordered, choice, if-then-else, iterate, and
repeat-until.

OWL-S would orchestrate the previous section’s
example as follows (again, using only the most
important commands):

<daml:Class rdf:ID=“test”>
<daml:subClassOf
rdf:resource=“Process.CompositeProcess”/>
<daml:subClassOf>
<daml:Restriction>
<daml:onProperty

rdf:resource=“Process#composedOf”/>
<daml:toClass>
<daml:Class>
<daml:intersectionOf rdf:parse-

Type=“daml:collection”>
<daml:Class

rdf:about=“process:Sequence”>
<daml:Restriction>
<daml:onProperty

rdf:resource=“Process#components”/>
<daml:toClass>
<daml:Class>
<process:listOfInstancesOf

rdf:parseType=“daml:col-
lection”>

<daml:Class rdf:about=“#ser-
viceA”/>

<daml:Class
rdf:about=“process:Split”>

<daml:Restriction>
<daml:onProperty

rdf:resource=“Process#components”/>
<daml:toClass>
<daml:Class>
<process:listOfInstancesOf

rdf:parseType=“daml:col-
lection”>

<daml:Class
rdf:about=“#serviceB”/>

<daml:Class
rdf:about=“#serviceC”/>

</process:listOfInstance-
sOf>

</daml:Class>
. . .

54 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

Researchers have proposed methods for transfer-
ring OWL-S descriptions to Prolog5 and Petri-net-
based notation6 to further analyze verification. In
the Prolog approach, the developer manually
translates an OWL-S description to Prolog, which
makes it possible to find an adequate plan for
composing Web services for a target description.
That is, for a given pool of available Web services,
it’s possible to use logical inference rules to auto-
mate service allocation for the required task. In the
Petri-net approach, an OWL-S description is auto-
matically translated into Petri nets. Developers use
this representation to automate tasks such as sim-
ulation, validation, verification, composition, and
performance analysis.

Web Components
The Web component approach treats services as
components in order to support basic software-
development principles such as reuse, specializa-
tion, and extension.7 The main idea is to encapsu-
late composite-logic information inside a class
definition, which represents a Web component. A
Web component’s public interface can then be
published and used for discovery and reuse.

Composition logic comprises composition type
and message dependency. Composition type can
take two forms:

• Order determines whether a component can
execute constituent services sequentially or in
parallel.

• Alternative execution indicates whether a com-
ponent can invoke alternative services until
one succeeds.

Message dependency defines input and output
message mapping. There are three types of
dependency:

• Synthesis generates a composed service’s out-
put message by combining the output messages
of constituent services.

• Decomposition binds the composed service’s
input messages into the input messages of con-
stituent services.

• Message mapping allows custom mapping
between constituent services’ inputs and out-
puts.

The Web component approach supports several
basic composition constructs: sequential,
sequential alternative, parallel with result syn-

chronization, and parallel alternative. They are
augmented with condition and while-do con-
structs. A Web component class definition for
our example is

class BC is paraWithSyn{
public Msg BCInput, BCOutput;
public operation(Msg)->Msg;
private void compose(B.operation,

C.operation);
private void

messageDecomposition(BCInput, BInput,
CInput);
private void messageSynthesis(BOutput,

COutput, BCOutput);
}

class test us sequ {
public Msg processInput, processOut-

put;
public operation(Msg)->Msg;
private void compose(A.operation,

BC.operation);
private void messageDecomposition(pro-

cessInput, AInput);
private void messageSynthesis(proces-

sOutput, BCOutput);
private void messageMapping(AOutput,

BCInput);
}

We can specify a Web component in two isomor-
phic forms: a class definition and an XML specifi-
cation described in Service Composition Specifica-
tion Language. The SCSL specification consists of
the composite service’s interface and the composi-
tion logic. Composition logic is specified as follows
in SCSL for the class test (defined above):

<construct>
<composition type=“sequ”>
<activity name=“A”>
<input message=“AInput”/>
<output message=“AOutput”/>
<performedBy serviceProvider=“A”/>
</activity>
<activity name=“BC”>
<input message=“BCInput”/>
<output message=“BCOutput”/>
<performedBy serviceProvider=“BC”/>
</activity>
<messageHandling>
<messageDecomposition>

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 55

Web Services Composition

<source message=“processInput”/>
<target message=“AInput”/>
</messageDecomposition>
<messageSynthesis>
<source message=“BCOutput”/>
<target message=“processOutput”/>
</messageSynthesis>
<messageMapping>
<source message=“AOutput”/>
<target message=“BCInput”/>
</messageMapping>
</messageHandling>
</composition>
</construct>

Web components offer both compatibility and con-
formance checking. Two services, S1 and S2, are
compatible when S1 is at least as capable as S2,
and when S1 can substitute for S2. Service S1 con-
forms to service S2 when we can combine S1 and
S2 so that S1’s output can be taken as S2’s input.
In our example, service A conforms to B and C,
whereas B and C are compatible.

Algebraic Process Composition
Algebraic service composition aims to introduce
much simpler descriptions than other approaches,
and to model services as mobile processes to
ensure verification of properties such as safety,
liveness (correct termination, for example), and
resource management.

Mobile-processes theory is based on ��
calculus,8 in which the basic entity is a process
— it can be an empty process; a choice between
several I/O operations and their continuations; a
parallel composition; a recursive definition; or a
recursive invocation. I/O operations can be input
(receive) or output (send). For example, x(y)
denotes receiving tuple y on channel x; x

_
[y]

denotes sending tuple y on channel x. Dotted
notation specifies an action sequence, such as
c
_
[1,d].d(x,y,z).c

_
[x+y+z], in which a process sends

tuple [1,d] on channel c, then receives a tuple at
channel d whose components are bound to the
variables x, y, and z, and finally sends the sum
of x+y+z to channel c. Parallel process composi-
tion is denoted with A|B. Several processes can
execute in parallel and communicate using com-
patible channels.

Describing services in such an abstract way lets
us reason about the composition’s correctness.9

Using ��calculus, we can describe our example
composition as

A(processInput).B
_
[AOutput].C

_
[AOutput]|

B(BInput).out
__

[BOutput]|
C(CInput).out

__
[COutput]|out(processOutput)

Using simple reduction, we can see that the com-
position’s only possible outcomes are either
processOutput=BOutput or processOutput=
COutput, which means that this composition guar-
antees lock freedom. In a finite number of steps,
the composition will produce the desired result.

Apart from verifying liveness, we can treat
other relevant properties by assigning behavioral
types to processes. There are at least two possible
ways to type processes: we can type only port sub-
sets or type the entire process. In the first case, we
can proscribe the type or shape of data that can be
exchanged via two ports. In our example, this
would create additional message limitations. We
could, for example, require that both AOutput and
BInput follow some pattern (type) to make reduc-
tion B

_
[AOutput]|B(BInput) possible. In our current

example, processes A and B can exchange any
kind of message, but if we type the messages
(ports), we could limit the exchange. In the second
case, we type the entire process and the type
notion becomes a homomorphic image of the
process. In many such systems, process and type
are synonyms.

With algebraic process composition, the gener-
al question is what information to type. Typing too
little can make it impossible to verify some prop-
erties, such as security. On the other hand, typing
too much creates a complexity that renders verifi-
cation unusable or impractical.

Petri Nets
Petri nets are a well-established process-modeling
approach. A Petri net is a directed, connected, and
bipartite graph in which nodes represent places
and transitions, and tokens occupy places. When
there is at least one token in every place connect-
ed to a transition, that transition is enabled. An
enabled transition might fire by removing one
token from every input place, and depositing one
token in each output place.

We can model services as Petri nets by assign-
ing transitions to methods and places to states.10

Each service has an associated Petri net that
describes service behavior and has two ports: one
input place and one output place. At any given time,
a service can be in one of the following states: not
instantiated, ready, running, suspended, or com-
pleted. After we define a net for each service, com-

56 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

CHM
高亮

position operators perform composition: sequence,
alternative (choice), unordered sequence, iteration,
parallel with communication, discriminator, selec-
tion, and refinement. These operators guarantee the
closure property. Thus, by composing two or more
Web services, we produce another service.

Let � be a sequence operator, for example, and
||� be a parallel operator with communication. We
can then write our example as A � (B ||� C). We use
a parallel operator with communication to compare
and select between outputs of services B and C.
Graphically, our service would look like Figure 1.

After specifying composition with a Petri net,
we can use it to prove some algebraic properties,
such as absence of deadlocks or livelocks (whether
composition will terminate in a finite number of
steps). Correct termination is very important for
composed service; we verify this property by deter-
mining whether the Petri net is live and bounded.

Model Checking and Finite-State Machines
Other approaches for Web service composition
include model checking, modeling service composi-
tion as Mealy machines (described below), and auto-
matic composition of finite-state machines (FSMs).

Model checking is used to formally verify
finite-state concurrent systems. We describe sys-
tem specification using temporal logic, then tra-
verse and check the model to see whether the spec-
ification holds. We can apply model checking to
Web service composition by verifying correctness
inside a workflow specification. Among the prop-
erties we can check are data consistency, unsafe
state avoidance (deadlock), and business-con-
straint satisfaction.11

Researchers have also proposed the conversa-
tion specification for Web service composition.12

According to this approach, understanding con-
stituent services’ local behavior and the composed
service’s global behavior are important to verify-
ing and guaranteeing correctness. The approach
models services as Mealy machines, which are
FSMs with input and output. Services communi-
cate by sending asynchronous messages, and each
service has a queue. A global “watcher” keeps
track of all messages. The conversation is intro-
duced as a sequence of messages. By studying and
understanding conversation properties, the method
provides new approaches for designing and ana-
lyzing “well-formed” service composition.

Automatic Web services composition is the
ultimate goal of most composition efforts. Berardi
and colleagues present a framework that describes

a Web service’s behavior as an execution tree and
then translates it into an FSM.13 They propose an
algorithm that checks a composition’s existence,
and returns one if it exists. In the process, the
composition is proved correct and the algorithm’s
computational complexity characterization is
given, ensuring that the automatic composition
will finish in the finite number of steps.

Method Comparison
We can now compare the various solutions with
respect to our four service-composition require-
ments. We also discuss the possibility of auto-
matic service composition. Table 1 summarizes
our results.

Connectivity and Nonfunctional Properties
All approaches offer services connectivity.
Although the services themselves are modeled in
various ways, at the lowest level, the connection
comes down to mapping and orchestrating input
and output messages between the partner services’
service ports. Most approaches neglect specifica-
tion of nonfunctional QoS properties such as secu-
rity, dependability, or performance. Only OWL-S
lets users define some nonfunctional properties
(namely, quality of service), but that capability has
yet to be fully specified.

Composition Correctness
Verifying correctness depends on the service and
composition specifications. BPEL and OWL-S pro-
vide no way to verify correctness. BPEL is a Turing-
complete language dealing more with implementa-
tion than specification, and thus it’s difficult to
provide a formalism to verify the correctness of
BPEL flows. All other approaches support verifica-

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 57

Web Services Composition

Figure 1. Petri net composition. To connect Petri nets representing
services B and C, we use a parallel operator with communication,
and then connect this composition with a Petri net representing
service A using a sequence operator.

Service A

Service C

Service B

CHM
高亮

tion in some way. Even OWL-S, when combined
with Prolog or Petri nets, allows reasoning about
correctness. However, the extent to which correct-
ness is verified varies.

Web components offer a simple way to check
for compatibility and conformance. �-calculus
offers powerful algebraic verification for deter-
mining liveness, security, and quality of service.
However, applying such verification depends on
what is typed when you model services as process-
es. Petri nets use elaborate algebra for verification.
We can check whether composition has deadlocks
by determining whether the corresponding Petri
net is live and bounded. Model checking’s verifi-
cation methods are comparable with �-calculus.
Many methods are available for proving that a
composed service’s specification conforms to the
model. The issue is deciding what needs to be spec-
ified for model checking to produce useful results.
Another problem is computing resources (such as
CPU time or storage space); given the vast state
space you must examine, you can run out of
resources and still not know whether the compo-
sition conforms to the model.

Automatic Composition
Many composition approaches aim to automate
composition, which promises faster application
development and safer reuse, and facilitates user
interaction with complex service sets. With auto-
mated composition, the end user or application
developer specifies a goal (a business goal
expressed in a description language or mathe-
matical notation) and an “intelligent” composi-
tion engine selects adequate services and offers
the composition transparently to the user. The
main problems are in how to identify candidate
services, compose them, and verify how closely
they match a request. So far, modeling services as
FSMs is the most promising automatic composi-
tion approach.

Composition Scalability
All composition approaches support Web services
connectivity through message passing via ports.
Composing two services, however, is not the same as
composing 10 or 100. In a real-world scenario, end
users will typically want to interact with many ser-
vices — consider the classic holiday booking scenario
— while enterprise applications will invoke chains of
possibly several hundred services. Therefore, one of
the critical issues is how the proposed approaches
scale with the number of services involved.

In BPEL, multiple service composition is some-
what tedious because XML files start to grow.
Because BPEL composition is recursive, we can
modularize composition. Unfortunately, BPEL has
no standard graphical notation. Some orchestration
servers offer graphical representation, and there are
proposals to use UML-like notation for descriptions.
Graphic notations are not formal, however, and they
don’t map one-to-one to BPEL’s complex language
constructs. OWL-S has similar issues.

The Web component approach achieves good
scalability with class definitions, but requires addi-
tional time for mapping and synchronization
between class definitions and XML. The �-calculus
approach offers concise notation with powerful
reduction mechanisms, which facilitate specification
of complex services. The Petri net approach’s scala-
bility is reduced by complexity issues, since Petri nets
are not a very scalable modeling technique. Finally,
judging the scalability of model checkers and FSM
models depends on the checker type and machine
state operations. This discussion is outside our sur-
vey’s scope, but with careful modeling, it’s likely that
a model checkers’ scalability will be better than Petri
nets and comparable to �-calculus.

Conclusion
Service composition approaches range from those
aspiring to become industry standards (BPEL and
OWL-S) to more abstract methods. An ideal

58 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

Table 1. Comparing service composition requirements.

Service Nonfunctional Composition Automatic Composition
connectivity properties correctness composition scalability

BPEL √ Average
OWL-S √ √ Average
Web components √ √ Low
�-calculus √ √ Good
Petri nets √ √ Low
Model checking/FSM √ √ √ N/A

approach would cover all four key requirements
that we identified. The main problem with “indus-
trial” approaches is correctness verification. Ser-
vice composition is sometimes called “program-
ming in the big,” yet it seems that industry is
unaware that even “programming in the small” is
plagued by numerous problems when formal
specification and verification are lacking. We
can’t expect an open paradigm with such varying
granularity as Web services to succeed based on
implementation languages alone. On the other
hand, formal approaches are often difficult to
apply in real-world enterprise environments, and
some face scalability problems. From the correct-
ness viewpoint, it’s beneficial to analyze Web ser-
vice properties using elaborate mathematics; how-
ever, to realize these benefits, we must be able to
translate from WSDL and SOAP to elegant math-
ematical solutions.

The Web service composability problem will
likely be around for a while. Given this, our
short-term goal should be to adopt an industry
standard. A long-term goal must be to incorpo-
rate verification mechanisms that both scale well
and let developers and users perform everyday
chores using Web services — without having to
worry about whether the process will deadlock,
consume all the memory, disclose confidential
corporate data, or send a credit-card number to
an unknown recipient.

References

1. M.P. Papazoglou and D. Georgakopoulos, “Service Orient-

ed Computing,” Comm. ACM, vol. 46, no. 10, 2003, pp.

25–28.

2. F. Curbera et al., “Unraveling the Web Services Web: An

Introduction to SOAP, WSDL, and UDDI,” IEEE Internet

Computing, vol. 6, no. 2, 2002, pp. 86–93.

3. F. Curbera et al., “The Next Step in Web Services,” Comm.

ACM, vol. 46, no. 10, 2003, pp. 29–34.

4. A. Ankolekar et al., “DAML-S: Web Service Description for

the Semantic Web,” Proc. Int’l Semantic Web Conf. (ISWC),

LNCS 2342, Springer-Verlag, 2002, pp. 348–363.

5. S. McIlraith and T.C. Son, “Adapting Golog for Composi-

tion of Semantic Web Services,” Proc. Int’l Conf. Princi-

ples of Knowledge Representation and Reasoning (KRR 02),

2002, pp. 482–493.

6. S. Narayanan and S. McIlraith, “Simulation, Verification

and Automated Composition of Web Services,” Proc. Int’l

World Wide Web Conf. (WWW2002), 2002, pp. 77–88.

7. J. Yang and M.P. Papazoglou, “Web Component: A Sub-

strate for Web Service Reuse and Composition,” Proc. 14th

Conf. Advanced Information Systems Eng. (CAiSE 02),

LNCS 2348, Springer-Verlag, 2002, pp. 21–36.

8. R. Milner, “The Polyadic �-Calculus: A Tutorial,” Logic and

Algebra of Specification, F.L. Bauer, W. Brauer, and H.

Schwichtenberg, eds., Springer-Verlag, 1993, pp. 203–246.

9. L.G. Meredith and S. Bjorg, “Contracts and Types,” Comm.

ACM, vol. 46, no. 10, 2003, pp 41–47.

10. R. Hamadi and B. Benatallah, “A Petri-Net-Based Model for

Web Service Composition,” Proc. 14th Australasian Data-

base Conf. Database Technologies, ACM Press, 2003, pp.

191–200.

11. X. Fu, T. Bultan, and J. Su, “Formal Verification of E-

Services and Workflows,” Proc. Workshop on Web Services,

E-Business, and the Semantic Web (WES), LNCS 2512,

Springer-Verlag, 2002, pp. 188–202.

12. T. Bultan et al., “Conversation Specification: A New

Approach to Design and Analysis of E-Service Composi-

tion,” Proc. Int’l World Wide Web Conf. (WWW 2003), ACM

Press, 2003, pp. 403–410.

13. D. Berardi et al., “Automatic Composition of E-Services that

Export Their Behavior,” Proc. 1st Int’l Conf. Service-

Oriented Computing (ICSOC 03), LNCS 2910, Springer-

Verlag, 2003, pp. 43–58.

Nikola Milanovic is a research fellow and PhD candidate at the

Institute for Informatics, Humboldt University, Berlin. His

research interests include component- and service-based

environments, service composition, ubiquitous computing,

ad hoc networking, and wireless communication.

Milanovic received a Dipl. Ing. in electrical engineering

from the University of Belgrade. Contact him at

milanovi@informatik.hu-berlin.de.

Miroslaw Malek is a professor and chair of computer architec-

ture and communication at Humboldt University, Berlin.

His research focuses on high-performance responsive com-

puting, including parallel architectures, real-time systems,

networks, and fault tolerance. Malek received a PhD in

computer science from the Technical University of Wro-

claw, Poland. He is a member of the ACM. Contact him at

malek@informatik.hu-berlin.de.

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 59

Web Services Composition

Write for Spotlight

Spotlight focuses on emerging technologies, or new aspects of existing
technologies, that will provide the software platforms for Internet

applications.
Spotlight articles describe technologies from the perspective of a devel-

oper of advanced Web-based applications. Articles should be 2,000 to 3,000
words.Guidelines are at www.computer.org/internet/dept.htm.

To check on a submission’s relevance, please contact department edi-
tor Siobhán Clarke at siobhan.clarke@cs.tcd.ie.

