
0018-9162/03/$17.00 © 2003 IEEE46 Computer

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Web Services
Orchestration and
Choreography

I n a recent Computer Sciences Corporation sur-
vey,1 senior information technology executives
ranked “connecting to customers, suppliers, or
partners electronically” as the top global IT
management issue. Web services offer stan-

dards-based mechanisms for addressing this issue.
However, existing methods for creating business
processes are not designed to work with cross-orga-
nizational components. Nor are these methods flex-
ible enough to handle the technical interfaces that
Web services introduce.

The terms orchestration and choreography
describe two aspects of creating business processes
from composite Web services. The two terms over-
lap somewhat, but Figure 1 illustrates their rela-
tionship to each other at a high level. Orchestration
refers to an executable business process that can
interact with both internal and external Web ser-
vices. The interactions occur at the message level.
They include business logic and task execution
order, and they can span applications and organi-
zations to define a long-lived, transactional, multi-
step process model.

Orchestration always represents control from one
party’s perspective. This differs from choreography,
which is more collaborative and allows each
involved party to describe its part in the interaction.
Choreography tracks the message sequences among
multiple parties and sources—typically the public
message exchanges that occur between Web ser-
vices—rather than a specific business process that a
single party executes.

PROCESS DESIGN REQUIREMENTS
Proposed orchestration and choreography stan-

dards must meet several technical requirements for
designing business processes that involve Web ser-
vices. These requirements address both the language
for describing the process workflow and the sup-
porting infrastructure for running it.

First, asynchronous service invocation is vital to
achieving the reliability and scalability that today’s
IT environments require. The capability to invoke
services concurrently can also enhance process per-
formance. Implementing asynchronous Web ser-
vices requires a mechanism to correlate requests
with each other. Software architects commonly use
correlation identifiers for this purpose.

The process architecture must also provide a way
to manage exceptions and transactional integrity. In
addition to handling errors and time-out constraints,
orchestrated Web services must ensure resource
availability for long-running distributed transactions.
Traditional ACID (atomicity, consistency, isolation,
and durability) transactions are typically not suffi-
cient for long-running, distributed transactions
because they cannot lock resources in a transaction
that runs over a long time. The notion of compen-
sating transactions offers a way to undo an action if
a process or user cancels it. With compensating trans-
actions, each method exposes an undo operation that
a transaction coordinator can invoke if necessary.

Web services orchestration must be dynamic, flex-
ible, and adaptable to meet changing business needs.
A clear separation between the process logic and the

Combining Web services to create higher level, cross-organizational
business processes requires standards to model the interactions.
Several standards are working their way through industry channels and
into vendor products.

Chris Peltz
Hewlett-Packard
Company

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

CHM
高亮

October 2003 47

Web services used promotes flexibility. An orches-
tration engine can usually achieve this separation.
The engine handles the overall process flow, calling
the appropriate Web services and determining what
steps to complete. This approach lets an organiza-
tion swap out services in the overall process flow.

Finally, process designers must be able to com-
pose higher-level services from existing orchestrated
processes. Exposing these processes through their
own Web service interfaces accomplishes this
goal of recursive combination.

EMERGING STANDARDS
Early work to design a business process by com-

bining Web services included Microsoft’s XLANG
and IBM’s Web Services Flow Language (WSFL).
The companies later combined these standards to
form Business Process Execution Language for Web
Services (BPEL4WS), one of the emerging specifi-
cations currently available to meet Web services
orchestration requirements.

Early work
Microsoft initially developed XLANG to support

sequential, parallel, and conditional process flows
for its BizTalk Server. XLANG uses the World Wide
Web Consortium’s (W3C) Web Services Description
Language (WSDL, www.w3.org/TR/wsdl12/) to
describe Web service interfaces. XLANG focuses on
the creation of business processes and the message
exchange behaviors among Web services. It also
includes a robust exception-handling facility, with
support for long-running transactions.

WSFL describes both public and private process
flows. It defines the data exchanges as well as the
execution sequence (flow models) and the mapping
of each step in the flow to specific operations (global
models). WSFL exposes a WSDL interface, allow-
ing recursive composition. It supports exception
handling but has no direct support for transactions.

UN/CEFACT, the United Nations Center for
Trade Facilitation and Electronic Business, devel-
oped the Electronic Business using Extensible
Markup Language. The ebXML standard provides
a suite of middleware components to facilitate col-
laboration between trading partners. The suite

includes the Business Process Specification Schema.
The BPSS protocol can define both the choreogra-
phy and communication protocols between Web-
based services.

Hewlett-Packard also developed the Web Services
Conversation Language. WSCL outlines a simple
standard for modeling the interaction sequences
between Web services. HP submitted WSCL as a
W3C Note in March 2002; the recently created
W3C Web Services Choreography working group
is currently considering it.

A variety of specifications and standards have
been introduced to address orchestration, but this
article focuses on three of the more recent initiatives.

Business Process Execution Language
Microsoft, IBM, Siebel Systems, BEA, and SAP

coauthored version 1.1 of the BPEL4WS specifica-
tion, which they released in May 2003. The speci-
fication—called BPEL, for short—models the
behavior of Web services in a business process inter-
action.2 It provides an XML-based grammar for
describing the control logic required to coordinate
Web services participating in a process flow. An
orchestration engine can then execute this gram-
mar, coordinating activities and compensating the
overall process when errors occur.

BPEL is a layer on top of WSDL. The WSDL
interface defines the specific operations allowed,
and BPEL defines how to sequence them. WSDL
describes the public entry and exit points for every
BPEL process, and WSDL data types describe the
information that passes between process requests.
Additionally, WSDL can reference external services
that the BPEL process requires.

BPEL provides support for both executable and
abstract business processes. An executable process
models the behavior of participants in a specific
business interaction, essentially modeling a private
workflow. An abstract process or business proto-
col specifies the public message exchanges between
parties. Business protocols are not executable and
do not convey a process flow’s internal details.
Essentially, executable processes model orchestra-
tion while abstract processes model the choreog-
raphy of services.

Web
service

Web
service

Web
service

Request purchase order

Acknowledge

Accept purchase order

Acknowledge

Orchestration Choreography

Web
service

Web
service

Web
service

Orchestration
Figure 1.
Orchestration versus
choreography.
Orchestration refers
to an executable
process.
Choreography tracks
the message
sequences between
parties and sources.

CHM
高亮

48 Computer

The BPEL4WS specification includes support for
both basic and structured activities. A basic activity
is an instruction that interacts with something exter-
nal to the process itself. For example, basic activi-
ties would handle receiving, replying, or invoking
Web services. In a typical scenario, a BPEL exe-
cutable process receives a message. Then it might
invoke a series of services to gather additional data
and subsequently respond to the requestor. In Figure
2, the receive, reply, and invoke messages all repre-
sent basic process activities.

Structured activities manage the overall process
flow, specifying the sequence for referenced Web ser-
vices. These activities also support conditional loop-
ing and dynamic branching. They are essentially
BPEL’s underlying programming logic for BPEL.

Variables and partnerLinks are two other impor-
tant BPEL elements.

• A variable identifies the specific data ex-
changed in a message flow. When a BPEL
process receives a message, it populates the

appropriate variable so that subsequent re-
quests can access the data. Variables are used
to manage data persistence across Web services
requests.

• A partnerLink could be any service that the
process invokes or any service that invokes the
process. Each partnerLink maps to a specific
role that it fulfills in the business process.

BPEL also provides a robust mechanism for han-
dling transactions and exceptions, building on top
of the WS-Coordination and WS-Transaction spec-
ifications. Developed jointly by Microsoft, IBM,
and BEA, these corollary specifications provide the
support necessary to manage and coordinate busi-
ness activity operations.

To group a set of activities in a single transaction,
BPEL uses a scope tag. The tag signifies that the
enclosed steps should either all complete or all fail.
Within this scope, a developer can specify compen-
sation handlers that the BPEL orchestration engine
can invoke in case of error.

Like the Java programming language, BPEL han-
dles exceptions through throw and catch clauses.

Web Services Choreography Interface
Sun, SAP, BEA, and Intalio developed the WSCI

specification,3 which defines a collaboration exten-
sion to WSDL. The specification became a W3C
Note in August 2002. WSCI defines the overall
choreography or message exchange between Web
services. The specification supports message corre-
lation, sequencing rules, exception handling, trans-
actions, and dynamic collaboration.

As Figure 3 shows, WSCI describes only the
observable behavior between Web services. It does
not address the definition of executable business
processes as BPEL does. Furthermore, a single
WSCI interface describes only one partner’s par-

Exception
handling and
transactions

Roles
and

partners

Persistence
and

variables

Step
1

Step
2

Sequential
flow

Step
3A

Step
3B

Parallel
flow

Step
3C

W
SDLW

SD
L

Web
service

Invoke

Web
service

Invoke

Web
service

Invoke

Web
service

Receive

Reply

Web
service

Receive

Reply

Figure 2. BPEL4WS
process flow. The
specification
supports structured
activities to manage
the overall process
flow as well as basic
activities that
involve interactions
with services
external to the
process itself.

Web
service

WSCI

Web
service

WSCI

Web
service

WSCI

Web
service

WSCI

Collaboration

Figure 3. WSCI
collaboration.
The interface
specification
addresses only the
observable behavior
between Web
services and not
the definition of
an executable
business process.

October 2003 49

ticipation in a message exchange. A WSCI chore-
ography would include a set of WSCI interfaces,
one for each partner in the interaction. In WSCI,
no single process manages the interaction.

Each WSCI action represents a unit of work that
maps to a specific WSDL operation. WSCI extends
WSDL, describing how to choreograph the avail-
able WSDL operations. In other words, WSDL
describes the entry points for each available service,
and WSCI describes the interactions among WSDL
operations.

WSCI supports both basic and structured activ-
ities. An action tag defines a basic request or
response message. Each activity specifies the WSDL
operation involved and the specific participant that
performs it. A choreography can then invoke exter-
nal services through a call tag. WSCI supports a
wide variety of structured activities, including con-
ditional looping and both sequential and parallel
processing.

The following WSCI interface creates a pur-
chasing process that contains two sequential activ-
ities, Receive Order and Confirm. Each activity
maps to a WSDL portType, and WSCI establishes
a correlation between them:

<process name="Purchase"
instantiation="message">

<sequence>
<action name="ReceiveOrder"

role="Agent" operation=
"tns:Order">

</action>
<action name="Confirm"

role="Agent” operation=
"tns:Confirm">

<correlate correlation=
"tns:ordered"/>

<call process="tns:
Purchase"/>

</action>
</sequence>

</process>

WSCI supports both business transactions and
exception handling. A process designer can set up
specific transactional contexts within this WSCI
interface, similar to the scope activity in BPEL4WS.
The context defines a set of activities for which any
failure will roll back the entire group.

Business Process Management Language
BPML is an XML-based language for describing

business processes. Business Process Management

Initiative (www.BPMI.org)—a nonprofit corpora-
tion chartered by Intalio, Sterling Commerce, Sun,
and CSC—developed the specification. Initially,
BPML was designed to support processes that a
business process management system could exe-
cute. The BPML Last Call Draft, however, released
in November 2002, also incorporated WSCI sup-
port. BPML and WSCI share the same underlying
process execution model, so developers can use
WSCI to describe public interactions among busi-
ness processes and reserve BPML for developing
private implementations.

BPML provides process flow constructs and
activities similar to BPEL.4 Basic activities for send-
ing, receiving, and invoking services are available,
along with structured activities for handling con-
ditional choices, sequential and parallel activities,
joins, and looping. BPML also lets a business
process developer schedule tasks to run at specific
times.

The language was designed to manage long-lived
processes and so includes features to support per-
sistence. XML exchanges occur between partici-
pants, using roles and partner definitions similar to
the BPEL constructs. BPML also supports recur-
sive composition to build aggregate business
processes from subprocesses.

BPML supports both short- and long-running
transactions, using a scoping technique similar to
BPEL to manage the compensation rules. Process
designers can nest processes and transactions.
Finally, the language includes a robust exception-
handling mechanism.

ORCHESTRATION AND CHOREOGRAPHED
COLLABORATION

BPEL, WSCI, and BPML all take somewhat dif-
ferent approaches to orchestration and choreogra-
phy. Both BPEL and BPML provide capabilities to
define an executable business process, whereas
WSCI’s approach is more choreographed and col-
laborative—requiring each message-exchange par-
ticipant to define a WSCI interface.

Figure 4 illustrates one way to categorize these
specifications and standards. The y-axis distin-

BPEL4WS
Abstract

processes
WSCI

BPEL4WS
Executable
processes

BPML

BPEL4WS
(IBM, Microsoft,

BEA)

WSCI/BPML
(Sun, Intalio,

SAP)

Collaborative
protocols

(choreography)

Executable
business
processes

(orchestration)

Figure 4. Relation-
ships among
orchestration and
choreography
standards: Business
Process Execution
Language for Web
Services, Web
Services
Choreography
Interface, and
Business Process
Management
Language.

50 Computer

guishes between collaborative protocols and exe-
cutable business processes. A collaborative proto-
col refers to choreographed message exchanges
between multiple business parties, while executable
processes are private workflows controlled by a sin-
gle entity. The x-axis shows the two emerging ini-
tiatives in the overall space: BPEL and WSCI/BPML
considered together. BPEL supports both exe-
cutable and collaborative processes, while BPML
and WSCI can work together so that BPML mod-
els the execution of a business process while WSCI
models the choreography among Web services.

CASE STUDY
To illustrate the concepts for orchestrating Web

services, consider a purchasing system scenario in
which a manufacturer wants to build a product con-
figuration using a list of available suppliers. The
manufacturer’s buyer works through a purchasing
agent to fulfill the inventory requirements. The agent
communicates with suppliers that offer the required
components. After identifying the suppliers for a
complete configuration, the purchasing agent sends
the buyer a proposal. The buyer then either orders
the parts or cancels the request. Figure 5 shows a
simplified sequence diagram for the process.

Each participant—buyer, agent, and supplier—
has a WSDL description of the exposed input and
output interfaces. This case study demonstrates the
purchasing agent’s perspective on the workflow and
the public interfaces it exposes. In addition to
accepting requests from the buyer and sending
requests to suppliers, the purchasing agent must
handle transactional integrity for the overall
process. For example, if a supplier cannot fulfill a
request because of low inventory or network prob-
lems, the agent must manage the process appro-
priately, either rolling back the request or providing
some mechanism for placing an incomplete order.

Since it describes an orchestrated process, this

case study could use either BPEL or BPML. How-
ever, I selected BPEL because it includes low-cost
tools and technical tutorials that appear to cater
more to developers.

The first step in documenting a BPEL process is
to define it. This starts with a root-level <process>
tag that names the process and lists its XML name-
space references.

Next, BPEL defines the process partners and
their roles. In BPEL, the <partnerLinks> and
<partnerLink> tags can implement the three basic
roles: buyer, purchasing agent, and supplier. A
WSDL document defines the <partnerLinkType>
tag that <partnerLink> references.

The following code sample defines a partner link
between the buyer and the purchasing agent:

<partnerLinks>
<partnerLink name="Buyer"

partnerLinkType=
"po:requestQuoteLinkType"

myRole="Purchaser"
partnerRole="Requestor"/>

<partnerLink name="Supplier1"
partnerLinkType=
"po:requestQuoteLinkType"

myRole="Requestor"
partnerRole="Purchaser"/>

<!—Set up other suppliers used in
this process —>

</partnerLinks>

The purchasing agent’s perspective requires only
the buyer and supplier partner relationships to be
defined. When the buyer interacts with the agent,
the buyer is the requestor and the purchasing agent
acts as the receiver. The roles are reversed when the
agent interacts with one of the suppliers.

The process must also manage the information
flow between partners. BPEL uses variables to per-
sist process information. In this scenario, the buyer
makes an initial purchase request; the agent then
constructs quote requests for each supplier with a
part number and quantity, and the suppliers
respond with pricing information. The agent then
constructs a proposal for the buyer.

Potentially four variables model this interaction:

<variables>
<variable name="request"

messageType="po:request"/>
<variable name="part_request

messageType="po:part_request"/>
<variable name="part_quote"

Figure 5. Case study
sequence diagram.
The manufacturer’s
buyer issues a
request for proposal
to a purchasing
agent. The agent
issues component
requests to
individual suppliers
and composes the
proposal from them.

1.4: proposal

Buyer

1: request

Agent

1.1: part_request

Supplier1 Supplier2 Supplier3

1.1.1: part_response

1.2: part_request

1.2.1: part_response

1.3: part_request

1.3.1: part_response

October 2003 51

messageType="po:part_quote"/>
<variable name="proposal"

messageType="po:proposal"/>
</variables>

The process must also correlate the requests with
each other. For example, we can assign a unique
identifier to each quote and to the final proposal.
BPEL documents these identifiers using the
<correlationSet> tag:

<correlationSets>
<correlationSet name="Quote"

properties="cor:quoteID"/>
<correlationSet name="Proposal"

properties="cor:proposalID"/>
</correlationSets>

A key part of the BPEL document defines the steps
required to handle the request. The <sequence> tag
runs activities sequentially; the <flow> tag runs them
in parallel; and the <receive>, <reply>, and <invoke>
tags define the basic activities required to interact
with the Web services using WSDL.

<sequence>
<receive name="receive" partnerLink=

"Buyer" operation="request"
variable="request"
initiate="yes">

</receive>
<flow name="supplier_flow">

<invoke name="quote_supplier1"
partnerLink="Supplier1"
operation="request_quote"
inputVariable = "part_request"
outputVariable="part_quote">

</invoke>
<!— invoke other suppliers as

part of the process, done in
parallel —>

</flow>
<reply name="reply" partnerLink=

"Buyer" operation=
"send_proposal variable=
"proposal">

</reply>
</sequence>

The sequence begins upon receipt of the buyer’s
request. The <flow> tag executes a parallel set of
activities to contact each supplier for part quotes.
Each activity references a specific WSDL operation
and uses the available variables for input and out-

put. Upon receiving the supplier responses, the pur-
chasing agent constructs a message replying to the
buyer. The agent could use the BPEL <assign> tag
and the W3C’s XPath language for addressing parts
of an XML document to take the suppliers’ con-
tainers and build a final proposal back to the buyer.

The final step is managing exceptions in the sce-
nario. For example, if an error occurs in contacting
a supplier, the agent may want to send a message
back to the buyer. BPEL4WS includes fault han-
dlers for these error conditions.
<faultHandlers>

<catch faultName=
"cantFulfillRequest">

<invoke partnerLink="buyer"
operation="sendError"
inputVariable="fault"/>

</catch>
</faultHandlers>

The process may also require compensation han-
dlers. For example, if the agent cannot contact a
supplier, the process must offer a way to roll back
the order. The BPEL <scope> tag sets a transac-
tional context by grouping related activities
together. In this scenario, the three parallel invoca-
tions to the suppliers might be a good candidate for
a scope declaration.

The completed process needs an orchestration
engine for deployment. Both IBM alphaWorks
(www.alphaworks.ibm.com) and Collaxa (www.
collaxa.com) offer good development tools for
designing, deploying, and running business pro-
cesses built with BPEL and WSDL.

FUTURE INITIATIVES
While BPEL4WS, WSCI, and BPML work their

way through standards processes and into vendor
product implementations, other enhancements and
issues relevant to Web services orchestration are
emerging.

IBM researchers have proposed a peer-to-peer
model of e-business interaction.5 They compare cur-
rent Web services to a vending machine—a set num-
ber of buttons that can be pressed in a predefined
order. They propose a conversational model—more
like a telephone call with flexible, dynamic exchanges
between the parties at each end. At this time, IBM’s
Conversation Support for Web Services is the only
proposal that claims to support this capability.6

Security is also a concern because orchestration
exposes Web services interfaces on HTTP, which
can present a number of security challenges. The
software industry is discussing several Web services

52 Computer

security standards, including XML Digital
Signatures and Encryption, Security Assertion
Markup Language, and WS-Security. These stan-
dards are intended to fill specific Web services
requirements for authentication, authorization, and
message-level security. The orchestration and
choreography standards presented here do not offer
direct support for security.

The other area receiving a great deal of attention
is Web services management. Organizations need
an end-to-end management infrastructure—for
applications, systems, and networks—that gives
them flexible control over business processes
involving Web services, including control of spe-
cific steps in the process. A robust management
infrastructure must both monitor the environment
and provide capabilities to adapt and optimize it
in real time. The need for this type of management
will become increasingly important as Web services
are combined, aggregated, and orchestrated to
form more meaningful business processes. Hewlett-
Packard has submitted an open, extensive Web ser-
vices management framework (http://devresource.
hp.com/drc/specifications/wsmf/WSMF-WSM.jsp)
to the industry consortium Oasis (www.oasis-open.
org) to address this specific need.

B PEL4WS has major companies supporting it,
including Microsoft, IBM, and BEA. More-
over, its supporters submitted the specifica-

tion to Oasis in April 2003, further broadening its
support. Sun, Intalio, and SAP initially submitted
the WSCI specification to the W3C, which has
assigned it to the Web Services Choreography
working group. While the Oasis BPEL technical
committee is focused on standardizing the
BPEL4WS specification, WS-Choreography is char-
tered with defining a choreography language.

While the industry appears to be embracing the
BPEL initiative, it is still unclear what part WSCI
and WS-Choreography will play. Vendor backing
and tools support will clearly influence the soft-
ware industry’s adoption rate. �

References
1. Computer Sciences Corp., “13th Ann. Critical Issues of

IS Management Survey,” 2000; www.csc.com/survey.
2. S. Weerawarana and C. Francisco, “Business Process

with BPEL4WS: Understanding BPEL4WS, Part 1,”
research report, IBM developerWorks, Aug. 2002;
www-106.ibm.com/developerworks/webservices/
library/ws-bpelcol1/.

3. A. Arkin et al., Web Service Choreography Interface
1.0, 2002; www.sun.com/software/xml/developers/
wsci/wsci-spec-10.pdf.

4. R. Shapiro, “A Comparison of XPDL, BPML, and
BPEL4WS,” draft document, Cape Visions, May
2002; http://xml.coverpages.org/Shapiro-XPDL.pdf.

5. J.E. Hanson, P. Nandi, and D. Levine, “Conversa-
tion-Enabled Web Services for Agents and e-Busi-
ness,” Proc. Int’l Conf. Internet Computing,
Computer Science Research, Education, and Appli-
cations (CSREA) Press, 2002, pp. 791-796.

6. S. Kumaran and P. Nandi, “Conversational Support
for Web Services: The Next Stage of Web Services
Abstraction,” research report, IBM developerWorks,
Sept. 2002; www-106.ibm.developerworks/
webservices/library/ws-conver/.

Chris Peltz is a senior software consultant in
Hewlett-Packard’s Developer Resources Organiza-
tion (devresource.hp.com), where he provides tech-
nical and architecture consulting to customers
exploring J2EE and Web-based solutions. His cur-
rent research addresses several emerging Web ser-
vices trends, including Web services orchestration
and Web services management. Peltz received an
ME in engineering management from the Univer-
sity of Colorado. Contact him at chris.peltz@hp.
com.

Computer is always looking for interesting
editorial content. In addition to our theme
articles, we have other feature sections such
as Perspectives, Computing Practices, and
Research Features as well as numerous
columns to which you can contribute. Check
out our author guidelines at

http://computer.org/computer/author.htm

for more information about how to contribute
to your magazine.

Computer
Wants
You

Computer
Wants
You

